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Abstract

This paper studies distributed estimation and inference for a general statistical problem with

a convex loss that could be non-differentiable. For the purpose of efficient computation, we re-

strict ourselves to stochastic first-order optimization, which enjoys low per-iteration complexity.

To motivate the proposed method, we first investigate the theoretical properties of a straightfor-

ward Divide-and-Conquer Stochastic Gradient Descent (DC-SGD) approach. Our theory shows

that there is a restriction on the number of machines and this restriction becomes more strin-

gent when the dimension p is large. To overcome this limitation, this paper proposes a new

multi-round distributed estimation procedure that approximates the Newton step only using

stochastic subgradient. The key component in our method is the proposal of a computationally

efficient estimator of Σ−1w, where Σ is the population Hessian matrix and w is any given

vector. Instead of estimating Σ (or Σ−1) that usually requires the second-order differentiability

of the loss, the proposed First-Order Newton-type Estimator (FONE) directly estimates the

vector of interest Σ−1w as a whole and is applicable to non-differentiable losses. Our estimator

also facilitates the inference for the empirical risk minimizer. It turns out that the key term in

the limiting covariance has the form of Σ−1w, which can be estimated by FONE.

1 Introduction

The development of modern technology has enabled data collection of unprecedented size, which

poses new challenges to many statistical estimation and inference problems. For example, given

N samples, a classical estimation approach usually formulates a maximum likelihood estimation

(MLE) problem and then solves the MLE by a deterministic optimization method (e.g., gradient

descent or Newton method). However, when the sample size N is excessively large, there are two
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major obstacles when adopting this approach. First, a standard machine does not have enough

memory to load the entire dataset all at once. Second, a deterministic optimization approach is

computationally expensive. To address the storage and computation issues, distributed computing

methods, originated from computer science literature, has been recently introduced into statistics.

A general distributed computing scheme partitions the entire dataset into L parts, and then loads

each part into the memory to compute a local estimator. The final estimator will be obtained via

some communication and aggregation among local estimators.

Second, to further accelerate the computation, we consider stochastic first-order methods (e.g.,

stochastic gradient/subgradient descent (SGD)), which have been widely adopted in practice. There

are a few significant advantages of SGD. First, as a first-order method, it only requires the subgra-

dient information. As compared to second-order Newton-type approaches, it is not only computa-

tionally efficient and more scalable but also has a wider range of applications to problems where

the empirical Hessian matrix does not exist. Second, a stochastic approach is much more efficient

than its deterministic counterpart. For example, in a typical regression problem with p-dimensional

predictors, the mini-batch SGD enjoys a low per-iteration time complexity of O(mp), where m is

the mini-batch size. In contrast, the deterministic gradient descent, which evaluates the gradient on

the entire dataset with n samples at each iteration, has a per-iteration complexity of O(np), where

n is much larger than m. Although SGD has been widely studied in machine learning and opti-

mization (see Section 2), using SGD for the purpose of statistical inference has not been sufficiently

explored.

This paper studies a general statistical estimation and inference problem under the distributed

computing setup. As we mentioned, to achieve an efficient computation, we restrict ourselves to

the use of only stochastic subgradient information. In particular, consider a general statistical

estimation problem in the following risk minimization form,

θ∗ = arg min
θ∈Rp

F (θ) := Eξ∼Πf(θ, ξ), (1)

where f(·, ξ) : Rp → R is a convex loss function that can be non-differentiable (e.g., in quantile

regression), and ξ denotes the random sample from a probability distribution Π (e.g., ξ = (Y,X)

in a regression setup). Our goal is to estimate θ∗ ∈ Rp under the diverging dimension case,

where the dimensionality p is allowed to go to infinity as the sample size grows (but p grows at a

slower rate than the sample size). This regime is more challenging than the fixed p case. On the

other hand, since this work does not make any sparsity assumption, the high dimensional setting

where p could be potentially larger than the sample size is beyond our scope. For the ease of

illustration, we will use two motivating examples throughout the paper: (1) logistic regression with

f(θ, ξ) = log(1 + exp(−YX ′θ)) (differentiable loss), and (2) quantile regression with f(θ, ξ) =

(Y −X ′θ)(τ − I{Y ≤X ′θ}) (non-differentiable loss), where τ is the quantile level and I{·} is the

indicator function.

Given n i.i.d. samples {ξi}ni=1, a traditional non-distributed approach for estimating θ∗ is to
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minimize the empirical risk via a deterministic optimization:

θ̂ = arg min
θ∈Rp

1

n

n∑
i=1

f(θ, ξi). (2)

Moreover, let g(θ, ξ) be the gradient (when f(θ, ξ) is differentiable) or a subgradient (when f(θ, ξ) is

non-differentiable) of f(θ, ξ) at θ. For many popular statistical models, the empirical risk minimizer

(ERM) θ̂ has an asymptotic normal distribution. That is, under some regularity conditions, for a

fixed unit length vector w ∈ Rp, as n, p→∞,

√
nw′(θ̂ − θ∗)√
w′Σ−1AΣ−1w

→ N (0, 1), (3)

where

Σ := ∇θEg(θ, ξ)|θ=θ∗ A = Cov(g(θ∗, ξ)) = E
[
g(θ∗, ξ)g(θ∗, ξ)′

]
. (4)

Under this framework, the main goal of our paper is twofold:

1. Distributed estimation: Develop a distributed stochastic first-order method for estimating

θ∗ in the case of diverging p, with the aim to achieve the best possible convergence rate

(i.e., the rate of the pooled ERM estimator θ̂). The method should be applicable to non-

differentiable loss f(θ, ξ) and only requires the local strong convexity of F (θ) at θ = θ∗

(instead of the strong convexity of F (θ) for any θ).

2. Distributed inference: Develop a consistent estimator of the limiting variancew′Σ−1AΣ−1w

to facilitate the inference. We note that the term A can be easily estimated via replacing

the expectation by its sample version. However, it is challenging to estimate Σ when f is

non-differentiable (and thus g will be discontinuous and the empirical Hessian matrix will not

exist). To this end, instead of estimating Σ, we aim to develop a stochastic first-order based

approach that directly estimates Σ−1w for any fixed given w.

Let us first focus on the distributed estimation problem. We will first investigate the theoretical

proprieties of a straightforward method that combines the stochastic subgradient descent (SGD)

and divide-and-conquer (DC) scheme and discuss the theoretical limitation of this method. To

overcome the theoretical limitation, we propose a new method called the distributed First-Order

Newton-type Estimator (FONE), where the key idea is to approximate the Newton step only using

stochastic subgradient information in a distributed setting.

In a distributed setting, the divide-and-conquer (DC) strategy has been recently adopted in

many statistical estimation problems (Li et al., 2013; Chen and Xie, 2014; Battey et al., 2018; Zhao

et al., 2016; Shi et al., 2018; Banerjee et al., 2018; Volgushev et al., 2018). A standard DC approach

estimates a local estimator for each local machine1 and then aggregates the local estimators to

1In a common single machine setup with excessively large data, each “local machine” corresponds to one partition

of the data that can fit into the memory.
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obtain the final estimator. Combining the idea of DC with the mini-batch SGD naturally leads

to a divide-and-conquer SGD (DC-SGD) approach, where we run SGD on each local machine and

then aggregate the obtained solutions by an averaging operation. The DC-SGD enjoys a very

low communication cost: the communication is one-round with an O(p) vector transmitted from

each local machine. Despite the simplicity and wide applicability of the DC-SGD, the theoretical

investigation of the asymptotic properties of this approach, especially in the diverging p case, is

still quite limited. In fact, our theoretical analysis reveals several interesting phenomena of the

mini-batch and DC-SGD when p is diverging, which also leads to useful practical guidelines when

implementing DC-SGD. First, a natural starting point in a standard mini-batch SGD is random

initialization. However, we show that when p diverges to infinity, a random initialized SGD will no

longer converge to θ∗, with the L2-estimation error being a polynomial of p (see Proposition 4.2).

To address the challenge arising from p → ∞, a consistent initial estimator θ̂0 is both sufficient

and necessary to ensure the convergence of SGD (see Theorem 4.1 and Proposition 4.2). Given a

consistent initialization (which can be easily constructed running a deterministic optimization on

a small batch of data), we can establish the estimation error rate of the DC-SGD in a distributed

environment (see Theorem 4.3). For this DC-SGD to achieve the optimal convergence rate, the

number of machines L has to be O(
√
N/p) (see Section 4.1.2), where N is the total number of

samples across L machines. The condition could be restrictive when the size of the entire dataset is

excessively large as compared to the limited memory size or when the number of machines is large

but each local machine has a limited storage (e.g., in a large-scale sensor network). Moreover, as

compared to the standard condition L = O(
√
N) in a fixed p setting, the condition L = O(

√
N/p)

becomes more stringent when p diverges.

To relax this condition on L and further improve the performance of DC-SGD, this paper

proposes a new approach called distributed first-order Newton-type estimator, which successively

refines the estimator by multi-round aggregations. The starting point of our method is the “one-

step estimator”, which is an effective approach to improve the statistical efficiency of a consistent

initial estimator θ̂0. In particular, the “one-step estimator” essentially performs the following

Newton-type step based on θ̂0:

θ̃ = θ̂0 −Σ−1

(
1

n

n∑
i=1

g(θ̂0, ξi)

)
, (5)

where Σ is the population Hessian matrix Σ and
(

1
n

∑n
i=1 g(θ̂0, ξi)

)
is the subgradient vector. As

we mentioned before, the estimation of Σ is not easy when f is non-differentiable and the empirical

Hessian matrix does not exist. To address this issue, our key idea is that instead of estimating Σ

and computing its inverse, we propose an estimator of Σ−1w ∈ Rp for any given vector w ∈ Rp,
which solves (5) as a special case (with w = 1

n

∑n
i=1 g(θ̂0, ξi)). In fact, the estimator of Σ−1w kills

two birds with one stone: it not only constructs a Newton-type estimator of θ∗ but also provides

an estimator for the asymptotic variance in (3), which facilitates the inference. In particular, the
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proposed FONE estimator of Σ−1w is an iterative procedure that only utilizes the mini-batches of

subgradient to approximate the Newton step.

Based on FONE, we further develop a multi-round distributed version of FONE which succes-

sively refines the estimator and does not impose any strict condition on the number of machines L.

Theoretically, we show that for a smooth loss, when the number of rounds K exceeds a constant

threshold K0, the obtained distributed FONE θ̂K achieves the optimal convergence rate. For a

non-smooth loss, such as quantile regression, our convergence rate only depends on the sample size

of one local machine with the largest sub-sample size. This condition is weaker than the case of

DC-SGD since the bottleneck in the convergence of DC-SGD is the local machine with the smallest

sub-sample size. Therefore, one can improve the performance of distributed FONE for non-smooth

losses by gathering more samples on a specific local machine. This is not hard to implement in

practice since it is easier to equip only one local machine with more memory and computation

power.

In summary, this paper studies the distributed estimation and inference based on stochastic

subgradient information in the case of diverging p. To achieve this goal, we start from a simple

DC-SGD and then propose our distributed FONE approach. Along the development of FONE, we

identify a key problem of estimating Σ−1w and propose a computationally efficient estimator. We

summarize our main contributions as follows:

1. We establish the theoretical properties of the DC-SGD in the case of diverging p. In par-

ticular, we first show that a consistent initial estimator is almost necessary to guarantee the

consistency of the obtained solution from a standard mini-batch SGD (see Proposition 4.2).

This is essentially different from the case that p is fixed. Then, we establish the convergence

rate of DC-SGD and characterize the restriction on the number of machines (see Theorem

4.3).

2. We develop a general First-Order Newton-type Estimator (FONE) for Σ−1w, which is com-

putationally efficient since it only utilizes the first-order information and is applicable to

non-differentiable and/or non-strongly-convex losses (see Algorithm 2). We further extend

FONE to the distributed setting (see Algorithm 3).

3. We provide the theoretical properties of the FONE for distributed estimation and inference

problems. In particular, we establish the convergence rates of the distributed FONE for

both smooth and non-smooth losses (see Theorems 4.5 and 4.7). Second, we prove that the

FONE provides a consistent estimator of the limiting variance for the purpose of inference

(see Theorems 4.8 and 4.9).
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1.1 Notations and organization of the paper

The remainder of the paper is organized as follows: In Section 2, we review the related literature on

recent works on distributed estimation and stochastic optimization. Section 3.1 describes the mini-

batch SGD algorithm with diverging dimension and the DC-SGD estimator. We further propose

FONE and distributed FONE in Section 3.2. Section 4 presents the theoretical results. In Section

5, we demonstrate the performance of the proposed estimators by simulation experiments, followed

by conclusions in Section 6. The proofs are provided in Appendix.

In this paper, we will heavily use the asymptotic notations O(·) and o(·). Roughly speaking,

f(n) = O(g(n)) means that f is bounded above by g (up to constant factor) asymptotically; and

f(n) = o(g(n)) means that f(n)/g(n) converges to zero and n goes to infinity. For a set of random

variables Xn and a corresponding set of positive numbers an, Xn = Op(an) means that Xn/an is

stochastically bounded and Xn = op(an) means that Xn/an converges to zero in probability as n

goes to infinity. Finally, denote the Euclidean norm for a vector x ∈ Rp by ‖x‖2, and denote the

spectral norm for a matrix X by ‖X‖. For any sequences {an} and {bn} of positive numbers, we

write an & bn if an ≥ cbn holds for all n and some absolute constant c > 0, an . bn if bn & an

holds, and an � bn if both an & bn and an . bn hold. We will use c, c0, c1, . . . and C,C0, C1, . . . to

denote constants, whose values can change from place to place.

In addition, since the distributed estimation and inference usually involves quite a few notations,

we briefly summarize them here. We use N , L, n = N/L, and m to denote the total number of

samples, the number of machines (or the number of data partitions), the sample size on each local

machine (when evenly distributed), and the batch size for mini-batch SGD, respectively. When we

discuss a problem in the classical single machine setting, we will also use n to denote the sample

size. We will use θ∗, θ̂, and θ̂0 to denote the minimizer of the popular risk, the ERM, and the

initial estimator, respectively. The random sample will be denoted by ξ and in a regression setting

ξ = (Y,X).

2 Related Works

Our work is closely related to two lines of research—distributed estimation and stochastic opti-

mization. We will review each topic in this section.

In recent years, the divide-and-conquer (DC) approach has been widely applied to statistical

estimation problems. Examples include density parameter estimation (Li et al., 2013), generalized

linear regression with non-convex penalties (Chen and Xie, 2014), kernel ridge regression (Zhang

et al., 2015), high-dimensional sparse linear regression (Lee et al., 2017), high-dimensional general-

ized linear models (Battey et al., 2018), semi-parametric partial linear models (Zhao et al., 2016),

quantile regression processes (Volgushev et al., 2018; Chen et al., 2019), principle component anal-

ysis (Fan et al., 2018), one-step estimator (Huang and Huo, 2015), M -estimators with cubic rate
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(Shi et al., 2018), and some non-standard problems where rates of convergence are slower than n1/2

and limit distributions are non-Gaussian (Banerjee et al., 2018). The DC approach enjoys a low

communication cost since it only requires one-round aggregation, e.g., averaging local estimators to

obtain the global estimator. This is also the idea behind our DC-SGD approach. However, since

the averaging only reduces the variance but not the bias term, all these types of results involve a

constraint on the number of machines, which aims to make the variance the dominating term.

Jordan et al. (2018) recently proposed a multi-round distributed estimation method by ap-

proximating the Newton step in an iterative aggregation scheme. A similar approach was also

independently developed by Wang et al. (2017). In particular, the key idea behind the method of

Jordan et al. (2018) is that instead of computing the Hessian matrix on the entire dataset, one can

approximate the Newton step by using the local Hessian matrix computed on a single machine (see

Algorithm 1 in Jordan et al. (2018)). On the other hand, to compute the local Hessian matrix, their

method requires the second-order differentiability on the loss function and thus is not applicable to

problems such as quantile regression. In contrast, our approach approximates the Newton step via

stochastic subgradient and thus can handle the non-differentiability in the loss function. In sum,

the methods in Jordan et al. (2018) and Wang et al. (2017) still belong to second-order approaches

while our method only utilizes stochastic first-order information.

The second field of related research is stochastic first-order optimization. One of the most

popular stochastic optimization methods is stochastic gradient descent (SGD), which dates back

to Robbins and Monro (1951). Due to its wide applicability in machine learning, there is a large

body of literature on SGD (see, e.g., Zhang (2004); Nesterov and Vial (2008); Bach and Moulines

(2011); Dekel et al. (2012); Ghadimi and Lan (2012); Xiao and Zhang (2014); Toulis et al. (2017);

Liang and Su (2017); Su and Zhu (2018) and references therein). Here, we will not be able to

provide a detailed survey on SGD but only highlight several key differences between our work

and the existing literature on SGD. First, many existing works either assume differentiability or

uniform strong convexity of loss functions. Instead, we do not require any of these assumptions.

We only assume F (θ) = Ef(θ, ξ) (i.e., the objective function in (1)) is strongly convex around

the population risk minimizer θ∗. Second, in the majority of the optimization literature on SGD,

the goal is to establish the convergence rate of the expected objective value, i.e., E(F (θ̃)−F (θ∗)),

where θ̃ is the solution of SGD. In contrast to the convergence from an optimization perspective,

we focus on the statistical estimation error ‖θ̃−θ∗‖2, where θ̃ is the solution of the DC-SGD in the

diverging p case. Moreover, our goal is to derive the estimation error and quantify both bias and

variance with an explicit dependence on the dimension p, the mini-batch size m, and the number

of machines L. The explicit dependence on these parameters cannot be easily found in the existing

literature.

In addition, our FONE of Σ−1w is related to a recently developed stochastic first-order approach—

stochastic variance reduced gradient (SVRG, see e.g., Johnson and Zhang (2013); Lee et al. (2017);

Wang and Zhang (2017) and references therein). Our method subsumes SVRG as a special case.
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Indeed, when the w = 1
n

∑n
i=1 g(θ, ξi), our iterative algorithm (non-distributed version) essentially

reduces to SVRG. On the other hand, we allow a general w vector, which does not need to be

an averaged gradient (e.g., for the purpose of inference in (3)). Moreover, the theoretical develop-

ment of SVRG requires the unbiasedness of the stochastic gradient with respect to the averaged

gradient 1
n

∑n
i=1 g(θ, ξi), the differentiability, and uniform strong convexity of the loss function f .

In contrast, our theoretical results do not require any of these conditions. In fact, the motivation

for our procedure is fundamentally different from that for SVRG: our method is to provide an

estimator Σ−1w with the population matrix Σ for any w; while most SVRG literature aims to

solve a finite-sum optimization problem min 1
n

n∑
i=1

f(θ, ξi) for a differentiable strongly-convex f .

Due to space limitations, we are not able to provide a comprehensive survey on SVRG in

this paper; instead, we briefly mention two papers that we consider most relevant. Lee et al.

(2017) recently developed a distributed SVRG method. However, to ensure the unbiasedness of

the stochastic gradient, it has a complicated data reallocation procedure across different machines

(see Algorithm 1 in Lee et al. (2017)), which is not required in our procedure. Our distributed

FONE computes the mini-batch stochastic subgradient using samples from only one local machine,

which also leads to a lower communication cost. Lee et al. (2017) also requires the loss function to

be differentiable and strongly-convex. The other work is a recent paper by Li et al. (2018), which

adopts SVRG for the inference based on ERM. The main part of the paper considers a fixed p setup,

under which the following limiting distribution result holds:
√
n(θ̂−θ∗)→ N (0,Σ−1AΣ−1). Under

the assumption of the second-order differentiability of the loss function f , the method in Li et al.

(2018) estimates Σ by the empirical Hessian matrix Σ̂. However, the estimation of Σ by Σ̂ could

suffer from a slow convergence when p is large. Moreover, Li et al. (2018) has not studied the

distributed estimation of θ∗. Our idea is different from Li et al. (2018): in the diverging p case, we

avoid estimating Σ but directly construct an estimator of the vector Σ−1w ∈ Rp as a whole.

3 Methodology

In this section, we introduce the DC-SGD algorithm and then describe the proposed FONE and

its distributed version.

3.1 Divide-and-conquer SGD (DC-SGD) algorithm

Before we introduce our DC-SGD algorithm, we first present the mini-batch SGD algorithm for

solving the stochastic optimization in (1) on a single machine with total n samples. In particular,

we consider the setting when the dimension p→∞ but at a slower rate than n, i.e., p ≤ nκ for some

κ ∈ (0, 1). Given n i.i.d. samples {ξ1, . . . , ξn}, we partition the index set {1, . . . , n} into s disjoint

mini-batches H1, ...,Hs, where each mini-batch has the size |Hi| = m (for i = 1, 2, . . . , s), and

s = n/m is the number of mini-batches. The mini-batch SGD algorithm starts from a consistent
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initial estimator θ̂0 of θ∗. Let z0 = θ̂0. The mini-batch SGD iteratively updates zi from zi−1 as

follows and outputs θ̂SGD = zs as its final estimator,

zi = zi−1 −
ri
m

∑
j∈Hi

g(zi−1, ξj), for i = 1, 2, . . . , s, (6)

where we set the step-size ri = c0/max(iα, p) for some 0 < α ≤ 1 and c0 is a positive constant. It is

worthwhile that a typical choice of ri in the literature is ri = c0 · i−α (Polyak and Juditsky, 1992).

Since we are considering a diverging p case, our step-size incorporates the dimension p. As one can

see, this mini-batch SGD algorithm only uses one pass of the data and enjoys a low per-iteration

complexity.

The bias and L2-estimation error of the mini-batch SGD will be provided in Theorem 4.1 (see

Section 4.1). We provide two examples on logistic regression and quantile regression to illustrate

the subgradient function g(θ, ξ) in our mini-batch SGD and will refer to these examples throughout

the paper.

Example 3.1 (Logistic regression). Consider a logistic regression model with the response Y ∈
{−1, 1}, where

P(Y = 1|X) = 1− P(Y = −1|X) =
1

1 + exp(−X ′θ∗)
,

and θ∗ ∈ Rp is the true model parameter. Define ξ = (Y,X). We have the smooth loss function

f(θ, ξ) = log(1 + exp(−YX ′θ)) and its gradient g(θ, ξ) = −YX
(
1 + exp(YX ′θ)

)−1
.

Example 3.2 (Quantile regression). Consider a quantile regression model Y = X ′θ∗ + ε, where

we assume that X = (1, X1, ..., Xp−1)′ and P(ε ≤ 0|X) = τ is the so-called quantile level. Define

ξ = (Y,X). We have the non-smooth quantile loss function f(θ, ξ) = `τ (Y −X ′θ) and `τ (x) =

x(τ − I{x ≤ 0}). A subgradient of the quantile loss is given by g(θ, ξ) = X(I{Y ≤X ′θ} − τ).

Given the mini-batch SGD, we are ready to introduce the divide-and-conquer SGD (DC-SGD).

For the ease of illustration, suppose that the entire sample with the size N is evenly distributed on

L machines (or split into L parts) with the sub-sample size n = N/L on each local machine. For the

ease of presentation, we assume that N/L is a positive integer. On each machine k = 1, 2, . . . , L,

we run the mini-batch SGD with the batch size m in (6). Let Hk be the indices of the data

points on the k-th machine, which is further split into s mini-batches {Hk,i, i = 1, 2, . . . , s} with

|Hk,i| = m and s = n/m. On the k-th machine, we run our mini-batch SGD in (6) and obtain the

local estimator θ̂
(k)
SGD. The final estimator is aggregated by averaging the local estimators from L

machines, i.e.,

θ̂DC =
1

L

L∑
k=1

θ̂
(k)
SGD. (7)
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Algorithm 1 DC-SGD algorithm

Input: The initial estimator θ̂0 ∈ Rp, the step-size sequence ri = c0/max(iα, p) for some

0 < α ≤ 1, the mini-batch size m.

1: Distribute the initial estimator θ̂0 to each local machine k = 1, 2, . . . , L.

2: for each local machine k = 1, 2, . . . , L do

3: Set the starting point z
(k)
0 = θ̂0.

4: for each iteration i = 1, . . . , s do

5: Update

z
(k)
i = z

(k)
i−1 −

ri
m

∑
j∈Hk,i

g(z
(k)
i−1, ξj),

6: end for

7: Set θ̂
(k)
SGD = z

(k)
s as the local SGD estimator on the machine k.

8: end for

9: Aggregate the local estimators θ̂
(k)
SGD by averaging and compute the final estimator:

θ̂DC =
1

L

L∑
k=1

θ̂
(k)
SGD.

10: Output: θ̂DC.

Note that the DC-SGD algorithm only involves one round of aggregation. The details of the

DC-SGD are presented in Algorithm 1.

In Theorem 4.3, we establish the convergence rate of the DC-SGD in terms of the dimension p,

the number of machines L, the total sample size N and the mini-batch size m. Moreover, we show

that for the DC-SGD estimator to achieve the same rate as the mini-batch SGD running on the

entire dataset, it requires a condition on the number of machines L.

3.2 First-Order Newton-type Estimator (FONE)

To relax the condition on the number of machines L, one idea is to perform a Newton-type

step in (5). However, as we have pointed out, the estimation of Σ requires the second-order

differentiability of the loss function. Moreover, a typical Newton method successively refines the

estimator of Σ based on the current estimate of θ∗ and thus requires the computation of matrix

inversion in (5) for multiple iterations, which could be computationally expensive when p is large.

In this section, we propose a new First-Order Newton-type Estimator (FONE) that directly

estimates Σ−1a (for any given vector a) only using the stochastic first-order information. Then for
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Algorithm 2 First-Order Newton-type Estimator (FONE) of Σ−1a

Input: Dataset {ξ1, ξ2, . . . , ξn}, the initial estimator θ̂0, step-size η, the batch-size m, and a given

vector a ∈ Rp.

1: Set z0 = θ̂0.

2: for each t = 1, 2, . . . , T do

3: Choose Bt to be m distinct elements uniformly from {1, 2, ..., n}.
4: Calculate

gBt(zt−1) =
1

m

∑
i∈Bt

g(zt−1, ξi), gBt(z0) =
1

m

∑
i∈Bt

g(z0, ξi).

5: Update

zt = zt−1 − η{gBt(zt−1)− gBt(z0) + a}.

6: end for

7: Output:

θ̂FONE = θ̂0 − zT . (8)

a given initial estimator θ̂0, we can perform the Newton-type step in (5) as

θ̃ = θ̂0 − Σ̂−1a, a =

(
1

n

n∑
i=1

g(θ̂0, ξi)

)
, (9)

where Σ̂−1a is our estimator of Σ−1a.

To estimate Σ−1a, we note that Σ−1a =
∞∑
i=0

(1 − ηΣ)iηa, for some small enough η such that

‖ηΣ‖ < 1. Then we can use the following iterative procedure {z̃t} to approximate Σ−1a:

z̃t = z̃t−1 − η(Σz̃t−1 − a), 1 ≤ t ≤ T, (10)

where η here can be viewed as a constant step-size. To see that (10) leads to an approximation of

Σ−1a, when T is large enough, we have

z̃T = z̃T−1 − η(Σz̃T−1 − a) = (I − ηΣ)z̃T−1 + ηΣa

= (I − ηΣ)2z̃T−2 + (I − ηΣ)ηa+ ηa

= (I − ηΣ)T−1z̃1 +

T−2∑
i=0

(I − ηΣ)iηa ≈ Σ−1a.

As the iterate z̃t approximates Σ−1a, let us define zt = θ̂0 − z̃t, which is the quantity of interest

(see the left-hand side of the Newton-type step in (9)). To avoid estimating Σ in the recursive
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update in (10), we adopt the following first-order approximation:

−Σz̃t−1 = Σ(zt−1 − θ̂0) ≈ gBt(zt−1)− gBt(θ̂0), (11)

where gBt(θ) = 1
m

∑
i∈Bt g(θ, ξi) is the averaged stochastic subgradient over a subset of the data

indexed by Bt ⊆ {1, 2, . . . , n}. Here Bt is randomly chosen from {1, . . . , n} with replacement for

every iteration.

Given (11), we construct our FONE of θ̂0 − Σ−1a by the following recursive update from

t = 1, 2, . . . , T :

zt = zt−1 − η{gBt(zt−1)− gBt(θ̂0) + a}, z0 = θ̂0. (12)

The obtained zT , as an estimator of θ̂0 − Σ−1a can be directly used in the Newton-type step in

(9). The choices of the input parameters and the convergence rate of our FONE will be proved in

Propositions 4.4 and 4.6. Also note that for constructing the estimator of Σ−1a, we can simply

use θ̂0 − zT and the procedure is summarized in Algorithm 2.

Remark 3.3. Our FONE of Σ−1a in (12) is related to the stochastic variance reduced gradient

(SVRG), see, e.g., Johnson and Zhang (2013); Lee et al. (2017); Wang and Zhang (2017) and

references therein. Our method can be viewed as a more generalized version of SVRG. In particular,

suppose that the loss function f(θ, ξ) is differentiable and let g(θ, ξ) be its gradient. The SVRG,

which aims to solve the optimization problem min 1
n

n∑
i=1

f(θ, ξi), iteratively updates:

zt = zt−1 − ηn
(
g(zt−1, ξit)− g(z0, ξit) +

1

n

n∑
i=1

g(z0, ξi)
)

where it is randomly drawn from {1, 2, . . . , n}. On the other hand, our FONE aims to provide a

consistent estimator of Σ−1a. As one can see, when a = 1
n

n∑
i=1

g(z0, ξi), our FONE reduces to a

mini-batch version of SVRG.

In addition, there are two major technical differences between our FONE and SVRG. First of

all, existing theoretical development of SVRG heavily relies on the unbiasedness of the stochastic

gradient g(z0, ξit), i.e., requiring Eitg(z0, ξit) = 1
n

n∑
i=1

g(z0, ξi). However, the unbiasedness condi-

tion is not necessary in our method, which makes FONE directly applicable to distributed settings

and also to an arbitrary vector a. For example, by choosing a to be a unit length vector w, Algo-

rithm 2 can be used for estimating the limiting variance in (3) of the empirical risk minimizer (see

Section 4.3 below for more details). Second, our FONE applies to non-smooth loss functions and

thus it applies to Newton-type approximation in (9) for quantile regression.

3.3 Distributed FONE for estimating θ∗

Based on the FONE for Σ−1a, we present a distributed FONE for estimating θ∗. Suppose the

entire dataset with N samples is distributed on L local machines {H1,H2, . . . ,HL} (not necessarily
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evenly distributed). Our distributed FONE is a multi-round approach with K rounds, where K is a

pre-specified constant. For each round j = 1, 2, . . . ,K, with the initialization θ̂j−1, we first calculate

a = 1
N

∑N
i=1 g(θ̂j−1, ξi) by averaging the subgradients from each local machine. Then we apply

FONE (Algorithm 2) with a on the local machine with the largest sub-sample size. Since FONE is

performed on one local machine, this iterative procedure does not incur any extra communication

cost. The detailed algorithm is given in Algorithm 3. In fact, the presented Algorithm 3 is essentially

estimating θ̂0 −Σ−1a with a = 1
N

∑N
i=1 g(θ̂0, ξi) and θ̂0 is a pre-given initial estimator.

It is worthwhile noting that in contrast to DC-SGD where each local machine plays the same

role, distributed FONE performs the update in (14) only on one local machine. The convergence

rate of distributed FONE will depend on the sub-sample size of this machine (see Theorems 4.5 and

4.7). Therefore, to achieve the best convergence rate, we perform the update in (14) on the machine

with the largest sub-sample size and index it by the first machine without loss of generality.

4 Theoretical Results

In this section, we provide theoretical results for mini-batch SGD in the diverging p case, DC-

SGD, the newly proposed FONE and its distributed version. We first note that in most cases, the

minimizer θ∗ in (1) is also a solution of the following estimating equation:

Eg(θ∗, ξ) = 0, (15)

where g(θ, ξ) is the gradient or a subgradient of f(θ, ξ) at θ. We will assume that (15) holds

throughout our paper. In fact, we can introduce (15) as our basic model (instead of (1)) as in the

literature from stochastic approximation (see, e.g., Lai (2003)). However, we choose to present the

minimization form in (1) as it is more commonly used in statistical learning literature.

Now let us first establish the theory for the DC-SGD approach in the diverging p case.

4.1 Theory for mini-batch SGD and DC-SGD

To establish the theory for DC-SGD, we first state our assumptions. The first assumption is on

the relationship among the dimension p, the sample size n, and the mini-batch size m. Recall that

α is the decaying rate in the step-size of SGD (see the input of Algorithm 1).

(C1). Suppose that p→∞ and p = O(nκ1) for some 0 < κ1 < 1. The mini-batch size m satisfies

p log n = o(m) and nτ1 ≤ m ≤ n/p1/α+τ2 for some 0 < τ1, τ2 < 1.

The remaining assumptions are on the continuity of the subgradient g(θ, ξ) and its expectation

G(θ) := Eg(θ, ξ).

(C2). Suppose that G(θ) is differentiable on θ and denote by Σ(θ) := ∇θG(θ). For some constant

C1 > 0, we have ∥∥Σ(θ1)−Σ(θ2)
∥∥ ≤ C1‖θ1 − θ2‖2 for any θ1,θ2 ∈ Rp. (16)
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Algorithm 3 Distributed FONE for Estimating θ∗ in (1)

Input: The total sample size N , the entire data {ξ1, ξ2, . . . , ξN} is distributed into L ma-

chines/parts {Hk} for k = 1, 2 . . . , L with |Hk| = nk. Initial estimator θ̂0 ∈ Rp, the batch size

m, step-size η. Number of rounds K.

1: for each round j = 1, 2, . . . ,K do

2: for each local machine k = 1, 2, . . . , L do

3: Calculate
∑
i∈Hk

g(θ̂j−1, ξi).

4: end for

5: Collect
∑
i∈Hk

g(θ̂j−1, ξi) from each local machine to compute their average:

a =
1

N

L∑
k=1

∑
i∈Hk

g(θ̂j−1, ξi) =
1

N

N∑
i=1

g(θ̂j−1, ξi). (13)

6: Send a to the first machine (the local machine with the largest sub-sample size).

7: Set z0 = θ̂j−1

8: for each t = 1, 2, . . . , T do

9: Choose Bt to be m distinct elements uniformly drawn from the data on the first machine

H1.

10: Calculate

gBt(zt−1) =
1

m

∑
i∈Bt

g(zt−1, ξi), gBt(z0) =
1

m

∑
i∈Bt

g(z0, ξi).

11: Update

zt = zt−1 − η{gBt(zt−1)− gBt(z0) + a}. (14)

12: end for

13: Set θ̂j = zT .

14: end for

15: Output: θ̂K .

Furthermore, let λmin(Σ(θ)) and λmax(Σ(θ)) be the minimum and maximum eigenvalue of Σ(θ),

respectively. We assume that c1 ≤ λmin(Σ(θ∗)) ≤ λmax(Σ(θ∗)) ≤ c−1
1 for some constant c1 > 0.

It is worthwhile to note that Σ defined in (4) is a brief notation for Σ(θ∗). The minimum

eigenvalue condition on Σ(θ∗) (i.e., λmin(Σ(θ∗)) ≥ c1) ensures that the population risk F (θ) is

locally strongly convex at θ = θ∗. Throughout this paper, we define a loss function f to be smooth

when f is continuously differentiable. We give two separate conditions for smooth and non-smooth
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loss functions, respectively.

(C3). (For smooth loss function f) For v ∈ Rp, assume that∣∣v′[g(θ1, ξ)− g(θ2, ξ)]
∣∣ ≤ U(v,θ1,θ2)‖θ1 − θ2‖2,

where U(v,θ1,θ2) satisfies that

sup
‖v‖2=1

sup
θ1,θ2

E exp
(
t0U(v,θ1,θ2)

)
≤ C, sup

‖v‖2=1
E sup
θ1,θ2

U(v,θ1,θ2) ≤ pc2 ,

for some c2, t0, C > 0. Moreover, one of the following two conditions on g(θ, ξ) holds,

1. sup‖v‖2=1 E supθ exp(t0|v′g(θ, ξ)|) ≤ C for some t0, C > 0;

2. sup‖v‖2=1 E exp(t0|v′g(θ∗, ξ)|) ≤ C and c1 ≤ λmin(Σ(θ)) ≤ λmax(Σ(θ)) ≤ c−1
1 uniformly in θ

for some t0, c1, C > 0.

Next, we consider the setting that f(θ, ξ) is non-differentiable (e.g., quantile regression) such

that g(θ, ξ) is its subgradient. In this case, the subgradient g(θ, ξ) may be discontinuous, which

violates Condition (C3). To this end, we propose an alternative condition (C3∗) as follows.

(C3∗). (For non-smooth loss function f) Suppose that for some constant c2, c3, c4 > 0,

sup
θ1:‖θ1−θ∗‖2≤c4

E
{

sup
θ2:‖θ1−θ2‖2≤n−M , ‖θ2−θ∗‖2≤c4

‖g(θ1, ξ)− g(θ2, ξ)‖42
}
≤ pc2n−c3M

for any large M > 0. Also

sup
‖v‖2=1

E(v′(g(θ1, ξ)− g(θ2, ξ))2 exp{t0|v′(g(θ1, ξ)− g(θ2, ξ))|} ≤ C‖θ1 − θ2‖2

and sup‖v‖2=1 E supθ exp(t0|v′g(θ, ξ)|) ≤ C for some t0, C > 0.

Conditions (C2), (C3) and (C3∗) can be easily verified in our two motivating examples of logistic

regression and quantile regression (see Appendix D). In Condition (C3), we only require either one

of the two bullets of the conditions on g(θ, ξ) to hold. The second bullet in Condition (C3) requires

the moment condition on the subgradient g(θ∗, ξ) holds at the true parameter θ∗, and weakens the

uniform moment condition in the first bullet. On the other hand, it imposes an extra condition on

the uniform eigenvalue bound of the matrix Σ(θ), which is equivalent to assuming that the loss

function f is strongly convex on its entire domain. It is also worthwhile noting that the second

bullet covers the case of linear regression where Σ(θ) = XX ′/n for all θ.

4.1.1 Theory of mini-batch SGD

Given these assumptions, we first provide some theoretical results of the mini-batch SGD in the

diverging p case. In particular, let E0(·) be the expectation to {ξi, 1 ≤ i ≤ n} given the initial
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estimator θ̂0. Let us denote the solution of mini-batch SGD in (6) with s = n/m iterations by

θ̂SGD. We obtain the consistency result of the mini-batch SGD in the diverging p case. Recall that

ri = c0/max(iα, p) for some 0 < α ≤ 1 and c0 is a sufficiently large constant.

Theorem 4.1. Assume (C1), (C2), (C3) or (C3∗) hold and the initial estimator θ̂0 is independent

to {ξi, i = 1, 2, . . . , n}. On the event {‖θ̂0−θ∗‖2 ≤ dn} with dn → 0, the mini-batch SGD estimator

satisfies

E0‖θ̂SGD − θ∗‖22 = O(
p

m1−αnα
) and ‖E0(θ̂SGD)− θ∗‖2 = O(

p

m1−αnα
).

Furthermore, if ‖θ̂0 − θ∗‖2 = oP(1), then ‖θ̂SGD − θ∗‖22 = OP( p
m1−αnα ).

Theorem 4.1 characterizes both the mean squared error and the bias of the obtained estimator

from SGD. When the decaying rate of the step-size α = 1, the convergence rate is not related to

m, and it achieves the same rate as the ERM θ̂ in (2) (i.e., O(
√
p/n)).

We note that Theorem 4.1 requires a consistent initial estimator θ̂0. In practice, we can always

use a small separate subset of samples to construct the initial estimator by minimizing the empirical

risk.

In contrast to the fixed p setting where an arbitrary initialization can be used, a consistent

initial estimator is almost necessary to ensure the convergence in the diverging p case, which is

shown in the following proposition:

Proposition 4.2. Assume that the initial estimator θ̂0 is independent to {ξi, i = 1, 2, . . . , n} and

satisfies E‖θ̂0 − θ∗‖22 ≥ p2ν for some ν > 0, the step-size ri ≤ C/iα for some 0 < α ≤ 1 and the

batch size m ≥ 1. Suppose that sup‖v‖1=1 supθ E(v′g(θ, ξ))2 ≤ C. We have E‖θ̂SGD − θ∗‖22 ≥ Cp2ν

for all n ≤ m exp(o(pν)) when α = 1 and for all n = o(mpν/(1−α)) when 0 < α < 1.

We note that Proposition 4.2 provides a lower bound result, which shows that in the diverging

p case, a standard mini-batch SGD with a random initialization will not converge with high proba-

bility. Indeed, a random initial estimator θ̂0 will incur an error E‖θ̂0− θ∗‖22 ≈ p. When p = nκ for

some κ > 0, the exponential relationship n ≤ m exp(o(pν)) holds with ν = 0.5 and thus Proposition

4.2 implies that θ̂SGD has a large mean squared error that is at least on the order of p. Proposition

4.2 indicates that a good initialization is crucial for SGD when p is diverging along with n.

4.1.2 Theory of DC-SGD

With the theory of mini-batch SGD in place, we provide the convergence result of the DC-SGD

estimator θ̂DC in (7) (see Algorithm 1). For the ease of presentation, we assume that the data are

evenly distributed, where each local machine has n = N/L samples.
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Theorem 4.3. Assume (C1), (C2), (C3) or (C3∗) hold, suppose the initial estimator θ̂0 is in-

dependent to {ξi, i = 1, 2, . . . , N}. On the event {‖θ̂0 − θ∗‖2 ≤ dn} with dn → 0, the DC-SGD

estimator achieves the following convergence rate:

E0‖θ̂DC − θ∗‖22 = O

(
p

L1−αm1−αNα
+

p2L2α

m2−2αN2α

)
. (17)

The convergence rate in (17) contains two terms. The first term comes from the variance of the

DC-SGD estimator, while the second one comes from the squared bias term. Note that n = N/L,

the squared bias term in (17) can be written as
( p
m1−αnα

)2
, which is the same as the square of the

bias from the mini-batch SGD on one machine (see Theorem 4.1). This is because the averaging

of the local estimators from L machines cannot reduce the bias term. On the other hand, the

variance term is reduced by a factor of 1/L by averaging over L machines. Therefore, when L is

not too large, the variance will become the dominating term and gives the optimal convergence

rate. An upper bound on L is a universal condition in the divide-and-conquer (DC) scheme to

achieve the optimal rate in a statistical estimation problem (see, e.g., Li et al. (2013); Chen and

Xie (2014); Zhang et al. (2015); Huang and Huo (2015); Battey et al. (2018); Zhao et al. (2016);

Lee et al. (2017); Volgushev et al. (2018)). In particular, let us consider the optimal step-size ri

where α = 1. When the number of machines L = O(
√
N/p), the rate in (17) becomes O(p/N),

which is a classical optimal rate when using all the N samples.

We next show on the two motivating examples that the constraint on the number of machines

L = O(
√
N/p) is necessary to achieve the optimal rate by DC-SGD. To this end, we provide the

lower bounds on our two examples for the bias of the SGD estimator on each local machine.

Example 3.1 (Continued). For a logistic regression model with ξ = (Y,X), let X = (1, X1, ..., Xp−1)′

with EXi = 0 for all 1 ≤ i ≤ p− 1 and θ∗ = (1, 0, ..., 0). Suppose that E‖X‖22 ≥ cp for some c > 0

and sup‖v‖2=1 E exp(t0|v′X|) ≤ C. Suppose the initial estimator θ̂0 is independent to {Xi, i =

1, 2, . . . , n}. On the event {‖θ̂0 − θ∗‖2 ≤ dn} with dn → 0, we have ‖E0(θ̂SGD)− θ∗‖2 ≥ cp
m1−αnα .

Example 3.2 (Continued). For a quantile regression model, assume that ε is independent with

X and EXi = 0 for all 1 ≤ i ≤ p − 1. Let F (x) be the cumulative distribution function of ε.

Suppose that E‖X‖22 ≥ cp for some c > 0 and sup‖v‖2=1 E exp(t0|v′X|) ≤ C. Suppose the initial

estimator θ̂0 is independent to {Xi, i = 1, 2, . . . , n}, and assume that F (·) has bounded third-order

derivatives and F ′(0), F ′′(0) are positive. On the event {‖θ̂0 − θ∗‖2 ≤ dn} with dn → 0, we have

‖E0(θ̂SGD)− θ∗‖2 ≥ cp
m1−αnα .

For the DC-SGD estimator θ̂DC, it is easy to see that the mean squared error E0‖θ̂DC−θ∗‖22 ≥
‖E0(θ̂DC) − θ∗‖22 (the squared bias of θ̂DC). Recall that the bias of θ̂DC is the average over local

machines, and each local machine induces the same bias ‖E0(θ̂SGD) − θ∗‖2 (see the bias in the

above two examples). Therefore, for logistic regression and quantile regression, when α = 1 and
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√
N/p = o(L) , we have

E0‖θ̂DC − θ∗‖22
p/N

≥ ‖E0(θ̂SGD)− θ∗‖22
p/N

≥ c2p2/n2

p/N
= c2 L2

N/p
→∞.

This shows that when the number of machines L is much larger than
√
N/p, the convergence rate

of DC-SGD will no longer be optimal.

4.2 Theory for First-order Newton-type Estimator (FONE)

We provide our main theoretical results on FONE for estimating Σ−1a and the distributed FONE

for estimating θ∗. The smooth loss and non-smooth loss functions are discussed separately in

Section 4.2.1 and Section 4.2.2.

Recall that n denotes the sample size used in FONE in the single machine setting (see Algorithm

2). In our theoretical results, we denote the step-size in FONE by ηn (instead of η in Algorithms 2

and 3) to highlight the dependence of the step-size on n. For the FONE method, Condition (C1)

can be further weakened to the following condition:

(C1∗). Suppose that p→∞ and p = O(nκ1) for some 0 < κ1 < 1. The mini-batch size m satisfies

p log n = o(m) with m = O(nκ2) for some 0 < κ2 < 1.

4.2.1 Smooth loss function f

To establish the convergence rate of our distributed FONE, we first provide a consistency result

for θ̂FONE in (8).

Proposition 4.4 (On θ̂FONE for Σ−1a for smooth loss function f). Assume (C1∗), (C2) and (C3)

hold. Suppose that the initial estimator satisfies ‖θ̂0 − θ∗‖2 = OP(dn), and ‖a‖2 = O(τn) (or

OP(τn) for the random case). The iteration number T and step-size ηn satisfy log n = o(ηnT ) and

T = O(nA) for some A > 0. We have

‖θ̂FONE −Σ−1a‖2 = OP
(
τndn + τ2

n +

√
p log n

n
τn +

√
ηnτn + n−γ

)
(18)

for any large γ > 0.

The relationship between ηn and T (i.e., log n = o(ηnT )) is intuitive since when the step-size

ηn is small, Algorithm 2 requires more iterations T to converge. The consistency of the estimator

requires that the length of the vector a goes to zero, i.e., τn = o(1), since τ2
n appears in the

convergence rate in (18). In Section 4.3, we further discuss a slightly modified FONE that deals

with any vector a, which applies to the estimation of the limiting variance of θ̂ in (3). When

τn = o(1), dn = o(1), and ηn = o(1), each term in OP in (18) goes to zero and thus the proposition

guarantees that θ̂FONE is a consistent estimator of Σ−1a. Moreover, since Proposition 4.4 will be
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used as an intermediate step for establishing the convergence rate of the distributed FONE, to

facilitate the ease of use of Proposition 4.4, we leave dn, τn, and ηn unspecified here and discuss

their magnitudes in Theorem 4.5. A practical choice of ηn is further discussed in the experimental

section.

Given Proposition 4.4, we now provide the convergence result for the multi-round distributed

FONE for estimating θ∗ and approximating θ̂ in Algorithm 3. To this end, let us first provide

some intuitions on the improvement for one-round distributed FONE from the initial estimator

θ̂0 to θ̂1. For the first round in Algorithm 3, the algorithm essentially estimates Σ−1a with

a = 1
N

N∑
i=1

g(θ̂0, ξi). When f(θ, ξ) is differentiable and noting that 1
N

N∑
i=1

g(θ̂, ξi) = 0 (where θ̂ is

the ERM in (2)), we can prove that (see more details in the proof of Theorem 4.5),

a =
1

N

N∑
i=1

g(θ̂0, ξi)− g(θ̂, ξi)

= G(θ̂0)−G(θ̂) +
1

N

N∑
i=1

{[g(θ̂0, ξi)− g(θ̂, ξi)]− [G(θ̂0)−G(θ̂)]}

= Σ(θ̂0 − θ̂) +OP(1)
(
‖θ̂0 − θ̂‖2‖θ̂0 − θ∗‖2 + ‖θ̂0 − θ̂‖22

)
+OP(1)

(√p logN

N
‖θ̂0 − θ̂‖2 +N−γ

)
, (19)

for any γ > 0. Note that in Algorithm 3, the FONE procedure is executed on the first machine.

For the ease of plugging the result in Proposition 4.4 on FONE, we let n := n1 to denote the

sub-sample size on the first machine.

Assuming that the initial estimator θ̂0 and θ̂ satisfy ‖θ̂0 − θ∗‖2 + ‖θ̂ − θ∗‖2 = OP(n−δ1) for

some δ1 > 0, then by (19), we have ‖a‖2 = OP(n−δ1) (i.e., the length τn = O(n−δ1) in Proposition

4.4). Moreover, we can further choose dn in Proposition 4.4 to be dn = O(n−δ1). Let the step-size

ηn = n−δ2 for some δ2 > 0. After one round of distributed FONE in Algorithm 3, by Proposition

4.4, we can obtain that ‖θ̂1 − θ̂‖2 = OP(n−δ1−δ0) with δ0 = min(δ1, δ2/2, (1 − κ1)/2), where κ1 is

the parameter in our assumption p = O(nκ1) (see Condition (C1∗)). Therefore, one can see that,

with one round of distributed FONE, the rate of convergence improves from O(n−δ1) to O(n−δ1−δ0).

Therefore, by implementing distributed FONE forK rounds, we will have ‖θ̂K−θ̂‖2 = O(n−δ1−Kδ0).

This convergence result of distributed FONE is formally stated in the next theorem.

Theorem 4.5 (distributed FONE for smooth loss function f). Assume (C1∗), (C2) and (C3) hold,

N = O(nA) for some A > 0. Suppose that ‖θ̂ − θ∗‖2 + ‖θ̂0 − θ∗‖2 = OP(n−δ1) for some δ1 > 0.

Let ηn = n−δ2 for some δ2 > 0, log n = o(ηnT ), T = O(nA) for some A > 0, and p log n = o(m).

For any γ > 0, there exists K0 > 0 such that for any K ≥ K0, we have ‖θ̂K − θ̂‖2 = OP(n−γ).

Again, we recall that n = n1 denotes the number of samples on the first machine. Note that γ

in Theorem 4.5 can be arbitrarily large. Hence our estimator θ̂K can asymptotically approximate
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the ideal solution θ̂ with a fast rate. Under some regular conditions, it is typical that ‖θ̂ − θ∗‖2 =

OP(
√
p/N). Therefore, for a smooth loss function f , our distributed FONE achieves the optimal

rate OP(
√
p/N). Note that it does not need any condition on the number of machines L. Given

the step-size ηn = n−δ2 , by the condition log n = o(ηnT ), we can choose the number of iterations

T = nδ2(log n)2 in the distributed FONE. Therefore, the computation complexity of distributed

FONE is O(np + nδ2(log n)2mp) for each round, on the first machine. We also note that n is the

sub-sample on the first machine, which is much smaller than the total sample size N . In terms of

the communication cost, each machine only requires to transmit an O(p) vector for each round.

4.2.2 Non-smooth loss function f

For a non-smooth loss, we provide the following convergence rate of the FONE of Σ−1a under

Conditions (C1∗), (C2) and (C3∗).

Proposition 4.6 (On θ̂FONE for Σ−1a for non-smooth loss function f). Assume the conditions in

Proposition 4.4 hold with (C3) being replaced by (C3∗). We have

‖θ̂FONE −Σ−1a‖2

= OP

(
τndn + τ2n +

√
p log n

n

√
τn +

p log n

m

√
ηn +

√
ηnτn +

p log n

n

)
. (20)

With Proposition 4.6 in hand, we now provide the convergence rate of the distributed FONE in

Algorithm 3 under Condition (C3∗). It is worthwhile noting that when f(θ, ξ) is non-differentiable,

then 1
N

∑N
i=1 g(θ̂, ξi) can be nonzero due to the discontinuity in the function g(θ, ξ), where θ̂ is the

ERM in (2). Therefore we need to assume that

N∑
i=1

g(θ̂, ξi) = OP(qN ) (21)

with qN = O(Nκ3) for some 0 < κ3 < 1. For example, for a quantile regression, qN = O(p3/2 logN)

(He and Shao, 2000), which satisfies this condition when p = o(Nκ4) with 0 < κ4 < 2/3.

Given Conditions (C1∗), (C2), (C3∗) and (21), we have the following convergence rate of θ̂K :

Theorem 4.7 (distributed FONE for non-smooth loss function f). Suppose that (C1∗), (C2), (C3∗)

and (21) hold, N = O(nA) and T = O(nA) for some A > 0. Suppose that ‖θ̂−θ∗‖2 +‖θ̂0−θ∗‖2 =

OP(n−δ1) for some δ1 > 0. Let ηn = n−δ2 for some δ2 > 0, log n = o(ηnT ), and p log n = o(m).

For any 0 < γ < 1, there exists K0 > 0 such that for any K ≥ K0, we have

‖θ̂K − θ̂‖2 = OP

(qN
N

+
√
ηn
p log n

m
+
(p log n

n

)γ)
. (22)

As one can see from (22), the distributed FONE has a faster convergence rate when the sub-

sample size on the first machine n1 is large (recall that n := n1). In practice, it is usually affordable

to increase the memory and computational resources for only one local machine. This is different
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from the case of DC-SGD, where the convergence rate actually depends on the smallest sub-sample

size among local machines.2

Let us provide more discussion on the convergence rate in (22). When the number of rounds

K gets larger, the parameter γ in the exponent of the third term can be arbitrarily close to 1.

Therefore, for the ease of discussion, let us treat γ as 1. For the second term in the right-hand

side of (22), we can choose the step-size ηn and the batch size m such that
√
ηn/m ≤ 1/(n log n),

and the second term will be dominated by the third one. So we only need to consider the first

term qN/N and the third term (p log n)/n. Due to qN in (21), the relationship between these

two terms depends on the specific model. Usually, under some conditions on the dimension p,

‖θ̂K − θ̂‖2 achieves a faster rate than ‖θ̂ − θ∗‖2, which makes θ̂K attain the optimal rate for

estimating θ∗. Let us take the quantile regression as an example, where the ERM θ̂ has an error

rate of ‖θ̂ − θ∗‖2 = OP(
√
p/N) and qN = O(p3/2 logN) (He and Shao, 2000). Assuming that

p = O(
√
N/ logN) and n ≥ c

√
Np logN , both the first and the third terms will be O(

√
p/N), such

that ‖θ̂K − θ∗‖2 = OP(
√
p/N).

Similar to the smooth case, the computation complexity is O(np+nδ2(log n)2mp) for each round,

on the first machine. Assuming the second term of (22) is dominated by the third term, we may

specifym =
√
ηnn log n and the corresponding computation complexity becomesO(n1+δ2/2(log n)3p).

Again, each machine only requires to transmit an O(p) vector for each round.

4.3 Application to the estimation of Σ−1w with ‖w‖2 = 1

Another important application of the proposed FONE is to conduct the inference of θ∗ in the

diverging p case. Recall the limiting distribution result in (3). To estimate the limiting variance,

we note that A can be easily estimated by Â = 1
n

n∑
i=1

g(θ̂0, ξi)g(θ̂0, ξi)
′. Therefore, we only need to

estimate Σ−1w. The challenge here is the theory of our Propositions 4.4 and 4.6 only applies to the

case Σ−1a with ‖a‖2 = o(1) or oP(1). However, in the inference application, we have ‖w‖2 = 1. To

address this challenge, given the unit length vector w, we define a = τnw, where ‖a‖2 = τn = o(1)

and its rate will be specified later in our theoretical results in Theorems 4.8 and 4.9. We run

Algorithm 2 and its output θ̂0 − zT is an estimator of τnΣ
−1w. Then the estimator of Σ−1w can

be naturally constructed as,

Σ̂−1w =
θ̂0 − zT
τn

, where in Algorithm 2 a = τnw. (23)

We note that the initial estimator θ̂0 for estimating Σ−1w needs to be close to the targeting

parameter θ∗. In a non-distributed setting, we could choose the ERM θ̂ as θ̂0 for inference, while

in the distributed setting, we use θ̂K from distributed FONE in Algorithm 3 with a sufficiently

large K.

2Noting that although we present the evenly distributed setting for DC-SGD for the ease of illustration, one can

easily see the convergence rate is actually determined by the smallest sub-sample size from the proof.
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We next provide the theoretical results of the estimator in (23) for two cases: f is smooth

and f is non-smooth. We note that for the purpose of asymptotic valid inference, we only need

Σ̂−1w in (23) to be a consistent estimator of Σ−1w. To show the consistency of our estimator, we

provide the convergence rates in the following Theorems 4.8 and 4.9 for smooth and non-smooth

loss functions, respectively:

Theorem 4.8 (Estimating Σ−1w for a smooth loss function f). Under the conditions of Proposition

4.4, let τn =
√

(p log n)/n. Assuming that ‖θ̂0 − θ∗‖2 = OP(dn) and log n = o(ηnT ), we have

‖Σ̂−1w −Σ−1w‖2 = OP

(√p log n

n
+
√
ηn + dn

)
. (24)

From Theorem 4.8, the estimator Σ̂−1w is consistent as long as dn = o(1) and the step-size

ηn = o(1). Let us further provide some discussion on the convergence rate in (24). If we choose a

good initiation such that dn = O(
√

(p log n)/n), the term dn in (24) will be a smaller order term.

For example, the initialization rate dn = O(
√

(p log n)/n) can be easily satisfied by using either the

ERM θ̂ or θ̂K from distributed FONE with a sufficiently large K. Moreover, we can specify ηn to

be small (e.g., ηn = O((p log n)/n)). Then the rate in (24) is
√

(p log n)/n, which almost matches

the parametric rate for estimating a p dimensional vector.

For non-smooth loss function f , we have the following convergence rate of Σ̂−1w:

Theorem 4.9 (Estimating Σ−1w for non-smooth loss function f). Under the conditions of Propo-

sition 4.6, let τn =
(
(p log n)/n

)1/3
. Assuming that ‖θ̂0 − θ∗‖2 = OP(dn) and log n = o(ηnT ), we

have

‖Σ̂−1w −Σ−1w‖2 = OP

((p log n

n

)1/3
+
√
ηn
(n1/3(p log n)2/3

m
+ 1
)

+ dn

)
. (25)

To make dn a smaller order term in the rate in (25), we choose a good initiation such that dn =

O((p log n)/n
)1/3

). As long as the step-size ηn is small such that ηn = min
( (p logn)2/3

n2/3 , m2

(p logn)2/3n4/3

)
,

the convergence rate in (25) is OP
(
((p log n)/n)1/3

)
, which implies that Σ̂−1w is a consistent esti-

mator of Σ−1w.

Furthermore, we briefly comment on an efficient implementation for computing the limiting

variance w′Σ−1AΣ−1w. Instead of explicitly constructing the estimator of A by a p × p matrix

Â = 1
n

n∑
i=1

g(θ̂0, ξi)g(θ̂0, ξi)
′, we can directly compute the estimator by

(Σ̂−1w)′Â(Σ̂−1w) =
1

n

n∑
i=1

(
g(θ̂0, ξi)

′Σ̂−1w
)2
, (26)

where Σ̂−1w is pre-computed by FONE. The implementation in (26) only incurs a computation

cost of O(np).
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5 Experimental Results

In this section, we provide simulation studies to illustrate the performance of our methods on two

statistical estimation problems in Examples 3.1–3.2, i.e., logistic regression and quantile regression

(QR). For regression problems in the two motivating examples, let ξi = (Yi,Xi) for i = 1, 2, . . . , N ,

where Xi = (1, Xi,1, Xi,2, . . . , Xi,p−1)′ ∈ Rp is a random covariate vector and N is the total sample

size. Here (Xi,1, Xi,2, . . . , Xi,p−1) follows a multivariate normal distribution N (0, Ip−1), where Ip−1

is a p−1 dimensional identity matrix. We also provide the simulation studies with correlated design

X, which are relegated to Appendix E.1). The true coefficient θ∗ follows a uniform distribution

Unif([−0.5, 0.5]p). For QR in Example 3.2, we follow the standard approach (see, e.g., Pang et al.

(2012)) that first generates the data from a linear regression model Yi = X ′iθ+ εi, where θ follows

a uniform distribution Unif([−0.5, 0.5]p) and εi ∼ N(0, 1). For each quantile level τ , we need to

compute the true QR coefficient θ∗ by shifting εi such that Pr(εi ≤ 0) = τ . Thus, the true QR

coefficient θ∗ = θ+ (Φ−1(τ), 0, 0, . . . , 0)′, where Φ is the CDF of the standard normal distribution.

In our experiment, we set the quantile level τ = 0.25. All of the data points are evenly distributed

on L machines with sub-sample size n = ni = N/L for i = 1, 2, . . . , L. We further discuss the

imbalanced situation in Section 5.4.

In the following experiments, we evaluate the DC-SGD estimator (see Algorithm 1) and dis-

tributed FONE (Dis-FONE, see Algorithm 3) by their L2-estimation errors. In particular, we report

the L2-distance to the true coefficient θ∗ as well as the L2-distance to the ERM θ̂ in (2). We also

compare the methods with mini-batch SGD in (6) on the entire dataset in a non-distributed setting,

which can be considered as a special case of DC-SGD when the number of machines L = 1. For all

these methods, it is required to provide a consistent initial estimator θ̂0. In our experiments below,

we compute the initial estimator by minimizing the empirical risk function in (2) with a small

batch of fresh samples. It is clear that as dimension p grows, it requires more samples to achieve

the desired accuracy of the initial estimator. Therefore, we specify the size of the fresh samples as

n0 = 10p. We also discuss the effect of the accuracy of the initial estimator θ̂0 by varying n0 (see

Appendix E.2).

For DC-SGD, the step-size is set to ri = c0/max(iα, p) with α = 1, and c0 is a positive

scaling constant. We use an intuitive data-driven approach to choose c0. We first specify a set C of

candidate choices for c0 ranging from 0.001 to 1000. We choose the best c0 that achieves the smallest

objective function in (2) with θ = θ̂
(1)
SGD using data points from the first machine (see Algorithm

1), i.e., c0 = arg minc∈C
1
n

∑n
i=1 f(θ̂

(1)
SGD, ξ

(1)
i ), where {ξ(1)

i , i = 1, 2, . . . , n} denotes the samples on

the first machine. For Dis-FONE, the step-size is set to η = c′0m/n, where c′0 is also selected from

a set C of candidate constants. Similarly, we choose the best tuning constant that achieves the

smallest objective in (2) with θ = θ̂1 and samples from the first machine. Here, θ̂1 is the output

of Dis-FONE after the first round of the algorithm. That is, c′0 = arg minc∈C
1
n

∑n
i=1 f(θ̂1, ξ

(1)
i ).

Moreover, given Condition (C1), we set the mini-batch size in DC-SGD (or the size of Bt in Dis-
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Table 1: Logistic regression: comparisons of L2-errors when varying the total sample size N and

dimension p changes. Here the number of machines L = 20. Denote by θ̂DC the DC-SGD estimator

and θ̂K the Dis-FONE with K = 20.

p L2-distance to the truth θ∗ L2-distance to ERM θ̂

θ̂0 θ̂DC θ̂SGD θ̂K θ̂ θ̂DC θ̂SGD θ̂K

N = 105

100 1.251 0.447 0.148 0.103 0.093 0.445 0.116 0.038

200 1.899 1.096 0.523 0.168 0.153 1.091 0.494 0.049

500 4.509 3.853 3.111 0.338 0.301 3.748 3.021 0.085

N = 2× 105

100 1.303 0.390 0.100 0.072 0.067 0.386 0.074 0.025

200 2.094 1.248 0.315 0.115 0.109 1.235 0.286 0.034

500 4.717 3.920 2.189 0.222 0.211 3.891 2.133 0.045

N = 5× 105

100 1.342 0.313 0.081 0.046 0.042 0.304 0.069 0.018

200 1.833 0.874 0.169 0.073 0.068 0.868 0.152 0.023

500 4.835 3.885 1.006 0.141 0.130 3.859 0.989 0.036

FONE, see Algorithm 3) as m = bp log nc, where bxc denotes the largest integer less than or equal

to x. For Dis-FONE, we first set the number of the iterations T in each round as T = 20 and the

number of rounds K = 20 for logistic regression and K = 80 for quantile regression. Note that

due to the non-smoothness in the loss function of quantile regression, it requires more rounds of

iterations K to ensure the convergence. We carefully evaluate the effect of T and K (by considering

different values of T and K) in Section 5.3. All results reported below are based on the average of

100 independent runs of simulations.

Furthermore, we also conduct the simulation studies for the estimator of Σ−1w and the estima-

tor for the limiting variance in (26) described in Section 4.3. Due to space limitations, the results

are provided in Appendix E.3.

5.1 Effect of N and p

In Tables 1–2, we fix the number of machines L = 20 and vary the total sample size N from

{105, 2×105, 5×105} and dimension p ∈ {100, 200, 500}. Results for logistic regression are reported

in Table 1 and results for quantile regression are in Table 2. In both tables, the left columns

provide the L2 estimation errors (with respect to the truth θ∗) of the DC-SGD estimator θ̂DC,

SGD estimator θ̂SGD, Dis-FONE θ̂K , and the ERM θ̂. For reference, we also report L2-errors of

the initial estimator θ̂0. The right columns report the L2-distances to the benchmark ERM θ̂.

24



Table 2: Quantile regression: comparisons of L2-errors when varying the total sample size N and

dimension p. Here the number of machines L = 20. Denote by θ̂DC the DC-SGD estimator and

θ̂K the Dis-FONE with K = 80.

p L2-distance to the truth θ∗ L2-distance to ERM θ̂

θ̂0 θ̂DC θ̂SGD θ̂K θ̂ θ̂DC θ̂SGD θ̂K

N = 105

100 0.450 0.079 0.063 0.047 0.043 0.073 0.050 0.020

200 0.715 0.114 0.109 0.082 0.071 0.106 0.097 0.035

500 1.278 0.198 0.176 0.144 0.126 0.176 0.142 0.062

N = 2× 105

100 0.450 0.070 0.037 0.035 0.030 0.067 0.021 0.015

200 0.726 0.101 0.067 0.059 0.054 0.098 0.037 0.027

500 1.287 0.176 0.118 0.098 0.076 0.157 0.065 0 .046

N = 5× 105

100 0.451 0.043 0.030 0.029 0.025 0.037 0.017 0.014

200 0.719 0.067 0.047 0.041 0.037 0.064 0.15 0.020

500 1.294 0.105 0.076 0.074 0.057 0.276 0.99 0.035

From Tables 1–2, we can see that the proposed Dis-FONE θ̂K achieves similar errors as the

ERM θ̂ in all cases, and outperforms DC-SGD and SGD especially when p is large. We also provide

Figure 1 that captures the performance of the estimators in terms of their L2-errors when the total

sample size N increases. From Figure 1, we can see that the estimation error for each method

decreases as N increases. Moreover, the L2-error of Dis-FONE is very close to the ERM as N

increases, while there is a significant gap between DC-SGD and the ERM .

5.2 Effect on the number of machines L

For the effect on the number of machines L, we fix the total sample size N = 105 and the dimension

p = 100 and vary the number of machines L from 1 to 100, and plot the L2-errors in Figure 2. From

Figure 2, the L2-error of DC-SGD increases as L increases (i.e., each machine has fewer samples).

In contrast, the L2-error of Dis-FONE versus L is almost flat, and is very close to ERM even when

L is large. This is consistent with our theoretical result that DC-SGD will fail when L is large.

The SGD estimator, which is the L = 1 case of DC-SGD (and thus its error is irrelevant of L and

is presented by a horizontal line), provides moderate accuracy.
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(a) Logistic regression: L2-distance to θ∗ (b) Logistic regression: L2-distance to θ̂

(c) Quantile regression: L2-distance to θ∗ (d) Quantile regression: L2-distance to θ̂

Figure 1: Comparison of L2-errors when N increases. The left column reports the L2-errors with

respect to the truth θ∗ and the right column reports the L2-errors with respect to the ERM θ̂.

Here the dimension p = 100 and the number of machines L = 20. In Dis-FONE, we set K = 20 in

the logistic regression case and K = 80 in the quantile regression case.

5.3 Effect of K and T in Dis-FONE

For Dis-FONE, we provide the comparison of the estimator errors with different numbers of rounds

K and numbers of inner iterations T . In Figure 3, we fix the total sample size N = 105, the

dimension p = 100, the number of machines L = 20 and vary T from {5, 20, 100}. The x-axis in

Figure 3 is the number of rounds K. For all three cases of T , the performance of Dis-FONE is

quite desirable and reaches the accuracy of the ERM when K becomes larger. When T is smaller,

it requires a larger K for Dis-FONE to converge. In other words, we need to perform more rounds
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(a) Logistic regression: L2-distance to θ∗ (b) Logistic regression: L2-distance to θ̂

(c) Quantile regression: L2-distance to θ∗ (d) Quantile regression: L2-distance to θ̂

Figure 2: Comparison of L2-errors when the number of machines L increases. Here the total sample

size N = 105 and the dimension p = 100. Denote by θ̂K the Dis-FONE with K = 20 in the logistic

regression case and K = 80 in the quantile regression case.

of Dis-FONE to achieve the same accuracy.

5.4 Effect on the sub-sample size of the first machine n1 in Dis-FONE

In previous simulation studies, the entire dataset is evenly separated on different machines. As

one can see from Algorithm 3 and Theorem 4.7, the sub-sample size on the first machine n1 plays

a different role than that on the other machines n2, n3, . . . , nL in Dis-FONE. In Figure 4, we

investigate the effect of n1 by varying n1 from N/L (the case of evenly distributed) to 10 ×N/L.

Let the remaining data points be evenly distributed on the other machines, i.e., n2 = n3 = · · · =
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(a) Logistic regression: L2-distance to θ∗ (b) Logistic regression: L2-distance to θ̂

(c) Quantile regression: L2-distance to θ∗ (d) Quantile regression: L2-distance to θ̂

Figure 3: Comparison of L2-errors when the number of rounds K in Dis-FONE increases. The

x-axis is the number of rounds K in Dis-FONE. Here the total sample size N = 105, the dimension

p = 100, and the number of machines L = 20. The errors of DC-SGD, SGD, and ERM are presented

by the horizontal lines since their performance is irrelevant of K.

nL = (N − n1)/(L − 1). We set N = 105 and L = 20. From Figure 4, the L2-error of Dis-FONE

gets much closer to ERM θ̂ in (2) when the largest sub-sample size n1 increases, which is consistent

with our theoretical results.

In Appendix E, we further investigate the case of correlated design, the effect of the quality of

the initial estimator, as well as the performance of the estimator of limiting variance.
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(a) Logistic regression: L2-distance to θ∗ (b) Logistic regression: L2-distance to θ̂

(c) Quantile regression: L2-distance to θ∗ (d) Quantile regression: L2-distance to θ̂

Figure 4: Comparison of L2-errors when the sub-sample size of the first machine n1 in Dis-FONE

increases. The x-axis is the ratio of n1 to the total sample size N . Here the total sample size

N = 105, the dimension p = 100, and the number of machines L = 20.

6 Conclusions

This paper studies general distributed estimation and inference problems based on stochastic sub-

gradient descent. We propose an efficient First-Order Newton-type Estimator (FONE) for estimat-

ing Σ−1w and its distributed version. The key idea behind our method is to use stochastic gradient

information to approximate the Newton step. We further characterize the theoretical properties

when using FONE for distributed estimation and inference with both smooth and non-smooth loss

functions. We also conduct simulation studies to demonstrate the performance of the proposed dis-

tributed FONE. The proposed FONE of Σ−1w is general a estimator, which could find applications

to other statistical estimation problems.
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A Technical Lemmas

In this section, we will give some technical lemmas which are used to prove the main results.

Lemma A.1. Let ζ1, ..., ζn be independent p-dimensional random vectors with Eζi = 0 and

sup
‖v‖2=1

E(v′ζi)
2 exp(t0|v′ζi|) <∞

for some t0 > 0. Let Bn be a sequence of positive numbers such that

sup
‖v‖2=1

n∑
i=1

E(v′ζi)
2 exp(t0|v′ζi|) ≤ B2

n.

Then for x > 0 and 2
√
p+ x2 ≤ Bn, we have

P
(∥∥∥ n∑

i=1

ζi

∥∥∥
2
≥ Ct0Bn

√
p+ x2

)
≤ e−x2 ,

where Ct0 is a positive constant depending only on t0.

Proof. Let Sp−1
1/2 be a 1/2 net of the unit sphere Sp−1 in the Euclidean distance in Rp. By the

proof of Lemma 3 in Cai et al. (2010), we have dp :=Card(Sp−1
1/2 ) ≤ 5p. So there exist dp points

v1, ...,vdp in Sp−1 such that for any v in Sp−1, we have ‖v − vj‖2 ≤ 1/2 for some j. Therefore, for

any vector u ∈ Rp, ‖u‖2 ≤ supj≤dp |v
′
ju|+ ‖u‖2/2. That is, ‖u‖2 ≤ 2 supj≤dp |v

′
ju|. Therefore,

P
(∥∥∥ n∑

i=1

ζi

∥∥∥
2
≥ Ct0Bn

√
p+ x2

)
≤ P

(
sup
j≤dp

∣∣∣ n∑
i=1

v′jζi

∣∣∣ ≥ 2−1Ct0Bn
√
p+ x2

)
≤ 5p max

j
P
(∣∣∣ n∑

i=1

v′jζi

∣∣∣ ≥ 2−1Ct0Bn
√
p+ x2

)
≤ e−x

2
,

where we let Ct0 = 4(t0 + t−1
0 ). The last inequality follows from Lemma 1 in Cai and Liu (2011),

by noting that 2
√
p+ x2 ≤ Bn.

Let h(u, ξ) be a q-dimensional random vector with zero mean. For some constant c4 > 0, define

Θ0 = {u ∈ Rq : ‖u− u0‖2 ≤ c4}, (27)

where u0 is a point in Rq. Assume the following conditions hold.

(B1). E supu∈Θ0
‖h(u, ξ)‖2 ≤ qc for some c > 0.

(B2). For u ∈ Θ0, assume sup‖v‖2=1 E(v′h(u, ξ))2 ≤ b(u) and b(u) satisfies |b(u1) − b(u2)| ≤
qc‖u1 − u2‖γ2 for some c, γ > 0, uniformly in u1,u2 ∈ Θ0.
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(B3). Assume that for some t0 > 0 and 0 ≤ α ≤ 1,

sup
‖v‖2=1

E(v′h(u, ξ))2 exp
(
t0

∣∣∣v′h(u, ξ)

bα/2(u)

∣∣∣) ≤ Cb(u)

for some constant C > 0, uniformly in u ∈ Θ0.

(B4). E supu1,u2∈Θ0,‖u1−u2‖2≤n−M ‖h(u1, ξ) − h(u2, ξ)‖2 ≤ qc2n−c3M for any M ≥ M0 with

some M0 > 0 and some c2, c3 > 0.

(B4∗) We have

sup
u1∈Θ0

E sup
u2∈Θ0:‖u1−u2‖2≤n−M

∥∥∥h(u1, ξ)− h(u2, ξ)

bα/2(u2)

∥∥∥4

2
≤ qc2n−c3M

for some c2, c3 > 0, and

sup
u1∈Θ0

sup
‖v‖2=1

E sup
u2∈Θ0:‖u1−u2‖2≤n−M

exp
(
t0

∣∣∣v′[h(u1, ξ)− h(u2, ξ)]

bα/2(u2)

∣∣∣) ≤ C
for any M ≥M0 with some M0 > 0 and some t0, C > 0.

Lemma A.2. Let 1 ≤ m ≤ n and q ≤ n. Assume (B1)-(B3) and (B4) (or (B4∗)) hold. For any

γ1, γ2 > 0, there exists a constant c > 0 such that

P
(

sup
θ∈Θ0

∥∥∥ 1
m

∑
i∈Bt h(θ, ξi)

∥∥∥
2√

b(θ) + bα(θ)(q log n)/m+ n−γ2
≥ c
√
q log n

m

)
= O(n−γ1).

Proof. Since Bt and {ξi} are independent, without loss of generality, we can assume that Bt is

a fixed set. Let {θ1...,θsq} be sq points such that for any θ ∈ Θ0, we have ‖θ − θj‖2 ≤ n−M for

sufficiently large M and some j. It is easy to prove that sq ≤ Cqq/2nqM ≤ Cn2qM for some C > 0.

For notation briefness, let b̃(θ) = b(θ) + bα(θ)(q log n)/m+ n−γ2 . We have

∑
i∈Bt h(θ, ξi)√

b̃(θ)
−
∑

i∈Bt h(θj , ξi)√
b̃(θj)

=
∑
i∈Bt

h(θ, ξi)×

√
b̃(θj)−

√
b̃(θ)√

b̃(θ)̃b(θj)

+
1√
b̃(θj)

×
(∑
i∈Bt

h(θ, ξi)−
∑
i∈Bt

h(θj , ξi)
)

=: Γ1 + Γ2.

By (B1), we can obtain hat

E sup
θ∈Θ0

∥∥∥∑
i∈Bt

h(θ, ξi)
∥∥∥

2
= O(nc)
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for some c > 0. By (B2), we can show that |̃b(θ) − b̃(θj)| ≤ Cnc−α
′γM for ‖θ − θj‖2 ≤ n−M ,

uniformly in j, where α′ = 1 if α = 0 and α′ = α if α > 0. Therefore

max
j

sup
‖θ−θj‖2≤n−M

∣∣∣√b̃(θj)−√b̃(θ)
∣∣∣√

b̃(θ)̃b(θj)
≤ Cnc+2γ2−γα′M .

This implies that Emaxj sup‖θ−θj‖2≤n−M ‖Γ1‖2 = O(n2c+2γ2−γα′M ).

We first consider the case that (B4) holds. Then Emaxj sup‖θ−θj‖2≤n−M ‖Γ2‖2 = O(nγ2/2+1+c2−c3M ).

Hence, by Markov’s inequality, for any γ1 > 0, by letting M be sufficiently large, we have

P
(

max
j

sup
‖θ−θj‖2≤n−M

∥∥∥ 1
m

∑
i∈Bt(h(θ, ξi)− h(θj , ξi))√

b̃(θj)

∥∥∥
2
≥ c
√
q log n

m

)
= O(n−γ1). (28)

We next prove (28) under (B4∗). By the proof of Lemma A.1, we have∥∥∥∑
i∈Bt

(h(θ, ξi)− h(θj , ξi))
∥∥∥

2
≤ 2 max

1≤l≤dq

∣∣∣v′l ∑
i∈Bt

(h(θ, ξi)− h(θj , ξi))
∣∣∣

≤ 2 max
1≤l≤dq

∣∣∣ ∑
i∈Bt

sup
‖θ−θj‖2≤n−M

|v′lH(θ,θj , ξi)|
∣∣∣,

where H(θ,θj , ξ) = h(θ, ξ)− h(θj , ξ). It is easy to see from (B4∗) that, for sufficiently large M ,

max
j

max
1≤l≤sq

∣∣∣∑i∈Bt E sup‖θ−θj‖2≤n−M |v
′
lH(θ,θj , ξi)|

∣∣∣√
b̃(θj)

= o(

√
q log n

m
).

Set Hl,j(ξi) = sup‖θ−θj‖2≤n−M |v
′
lH(θ,θj , ξi)|/bα/2(θj). By (B4∗) and Holder’s inequality, we have

max
j

∑
i∈Bt

E(Hl,j(ξi))2 exp(t0Hl,j(ξi)/2) ≤ mqc2/2n−c3M/2.

We now take B2
n = c5mb̃(θj)/b

α(θj) and x2 = c5q log n in Lemma 1 in Cai and Liu (2011), noting

that mqc2/2n−c3M/2 ≤ B2
n and x2 ≤ B2

n, we have for any γ,M > 0, there exist c, c5 > 0 such that

uniformly in j,

P
(∣∣∣∑i∈Bt [sup‖θ−θj‖2≤n−M |v

′
lH(θ,θj , ξi)| − E sup‖θ−θj‖2≤n−M |v

′
lH(θ,θj , ξi)|]

m

√
b̃(θj)

≥ c
√
q log n

m

)
= O(n−γq).

This proves (28) under (B4∗) by noting that sq = O(n2qM ) and dq ≤ 5q.

Now it suffices to show that

P
(

max
j

∥∥∥ 1
m

∑
i∈Bt h(θj , ξi)

∥∥∥
2√

b̃(θj)
≥ c
√
q log n

m

)
= O(n−γ1). (29)
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Let ζi = h(θj , ξi)/b
α/2(θj), i ∈ Bt. By (B3), it is easy to see that

sup
‖v‖2=1

∑
i∈Bt

E(v′ζi)
2 exp(t0|v′ζi|) ≤ C2m[b(θj)]

1−α

for some C2 > 0. Take x =
√

(γ1 + 2M)q log n and

B2
n = 4(C2 + γ1 + 2M + 1)

(
m[b(θj)]

1−α + q log n+m(b(θj))
−αn−γ2

)
= 4(C2 + γ1 + 2M + 1)mb̃(θj)/b

α(θj).

Note that 2
√
q + x2 ≤ Bn. By Lemma A.1, we obtain (29) by letting c be sufficiently large.

Let ḡ(θ, ξ) = g(θ, ξ)− Eg(θ, ξ). For some c4 > 0, define

Ct =
{

sup
‖θ−θ∗‖2≤c4

∥∥∥ 1

m

∑
i∈Bt

ḡ(θ, ξi)
∥∥∥

2
≤ c
√
p log n

m

}
,

C =
{

sup
‖θ−θ∗‖2≤c4

∥∥∥ 1

n

n∑
i=1

ḡ(θ, ξi)
∥∥∥

2
≤ c
√
p log n

n

}
,

where c is sufficiently large.

Lemma A.3. Under (C3) or (C3∗) and p log n = o(m), for any γ > 0, there exists a constant

c4 > 0 such that

P(Ct ∩ C) ≥ 1−O(n−γ).

The same result holds with Bt being replaced by Ht.

Proof. In Lemma A.2, take u = θ, u0 = θ∗, q = p, α = 0 and h(θ, ξ) = g(θ, ξ)− Eg(θ, ξ). Then

(C3) (or (C3∗)) implies that (B1)-(B4) (or (B4∗), respectively) hold with α = 0, and b(θ) = C for

some large C. So we have

P(Ct ∩ C) ≥ 1−O(n−γ)

for any large γ.

Lemma A.4. Suppose that p→∞, ri = c0/max(p, iα) for c0 > 0 and 0 < α ≤ 1. Let c > 0, τ > 0

and d ≥ 1.

(1) For a positive sequence {ai} that satisfies ai ≤ (1 − cri)ai−1 + rdi bn, 1 ≤ i ≤ n, we have

ai ≤ C(rd−1
i bn + i−γ) for any γ > 0 and all i ≥ p1/α+τ by letting c0 be sufficiently large.

(2) For a positive sequence {ai} that satisfies ai ≥ (1 − cri)ai−1 + rdi bn, 1 ≤ i ≤ n, we have

ai ≥ Crd−1
i bn for all i ≥ p1/α+τ by letting c0 be sufficiently large.
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Proof. We first prove the first claim. For i ≥ p1/α+τ , we have

ai ≤ (1− cri)ai−1 + rdi bn

= a0

i∏
j=1

(1− crj) + bn

i∑
k=1

rdk

i−1∏
j=k

(1− crj+1)

≤ a0 exp
(
− c

i∑
j=1

rj
)

+ bn

i∑
k=1

rdk exp
(
− c

i−1∑
j=k

rj+1

)
≤ a0 exp

(
− c̃
(
pα/p+

1

2

∫ i

pα

1

xα
dx
))

+ bn

i∑
k=pα+1

rdk exp
(
− c̃

2

∫ i

k

1

xα
dx
)

+ bn

pα∑
k=1

rdk exp
(
− c̃
(pα − k

p
+

1

2

∫ i

pα

1

xα
dx
))

= a0 exp
(
− c̃
(
pα/p+

1

2

∫ i

pα

1

xα
dx
))

+ cd0bn

i∑
k=pα+1

k−αd exp
(
− c̃

2

∫ i

k

1

xα
dx
)

+ cd0bn

pα∑
k=1

p−d exp
(
− c̃
(pα − k

p
+

1

2

∫ i

pα

1

xα
dx
))
, (30)

where pα = bp1/αc, c̃ = c0c, and α, c0 are defined in the step-size ri.

When α = 1, we have

(30) =
a0p

c̃/2e−c̃

ic̃/2
+ cd0bn

i∑
k=p+1

kc̃/2−d

ic̃/2
+ cd0bn

p∑
k=1

pc̃/2−d exp(c̃k/p− c̃)
ic̃/2

≤ a0p
c̃/2e−c̃

ic̃/2
+ cd0bni

1−d +
cd0bnp

c̃/2−d+1

ic̃/2

≤ C(rd−1
i bn + i−γ),

when c0 is large enough such that c̃ = c0c ≥ 2 max(d, γ)(1 + 1/τ).

When α < 1, for any κ > 0 and 1 ≤ u < i, we have∫ i

u
x−αd exp

(κx1−α

1− α
)
dx

=
1

κ
x−αd+α exp

(κx1−α

1− α
)∣∣∣i
u
−
∫ i

u

α− αd
κ

x−αd+α−1 exp
(κx1−α

1− α
)
dx

≤ 1

κ
x−αd+α exp

(κx1−α

1− α
)∣∣∣i
u

+ uα−1

∫ i

u

α(d− 1)

κ
x−αd exp

(κx1−α

1− α
)
dx.

Therefore, we have∫ i

u
x−αd exp

(κx1−α

1− α
)
dx ≤ 1

κ− αd+ α
x−αd+α exp

(κx1−α

1− α
)∣∣∣i
u

(31)
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for κ > α(d− 1). By (31), we have for i ≥ p1/α+τ ,

(30) = a0 exp
(
− c̃
(pα
p

+
i1−α − p1−α

α

2− 2α

))
+ cd0bn

i∑
k=pα+1

k−αd exp
(
−
c̃
(
i1−α − k1−α)

2− 2α

)
+cd0bn

pα∑
k=1

p−d exp
(
− c̃
(pα − k

p
+
i1−α − p1−α

α

2− 2α

))
≤ a0 exp

(
− c̃(i1−α − p1−α

α )

2− 2α

)
+ cd0bni

−αd

+cd0bn exp
(
− c̃i1−α

2− 2α

)∫ i

pα+1
x−αd exp

( c̃x1−α

2− 2α

)
dx

+cd0bnpαp
−d exp

(
− c̃(i1−α − p1−α

α )

2− 2α

)
≤ a0 exp

(
− c̃(i1−α − p1−α

α )

2− 2α

)
+ cd0bni

−αd

+cd0bn

( i−α(d−1)

c̃/2− αd+ α
+ pαp

−d exp
(
− c̃(i1−α − p1−α

α )

2− 2α

))
≤ C(rd−1

i bn + i−γ)

for large enough c0 such that c̃ > 2α(d− 1).

To prove the second claim, we first recall that p → ∞ and supi≥1 ri = o(1). Hence 1 − crj ≥
exp(−2crj) for all j. Then

ai ≥ a0 exp
(
− 2c

i∑
j=1

rj
)

+ bn

i∑
k=1

rdk exp
(
− 2c

i−1∑
j=k

rj+1

)
≥ bn

i∑
k=1

rdk exp
(
− 2c̃

∫ i

k

1

xα
dx
)
. (32)

When α = 1, we have

(32) ≥ cd0bni−2c̃
i∑

k=p+1

k2c̃−d ≥ cd0bn(i−d+1 − i−2c̃p2c̃−d+1)

2c̃− d+ 1
≥ c1r

d−1
i bn,

for 2c̃ > d− 1 and i ≥ p1+τ .

When α < 1, we have for i ≥ p1/α+τ ,

(32) ≥ cd0bn

i∑
k=pα+1

k−αd exp
(
−

2c̃
(
i1−α − k1−α)

1− α

)
≥ cd0bn exp

(
− 2c̃i1−α

1− α

)∫ i

pα

x−αd exp
(2c̃x1−α

1− α

)
dx

≥ cd0bn
2c̃

x−αd+α exp
(2c̃(x1−α − i1−α)

1− α
)∣∣∣i
pα

=
1

2c
rd−1
i bn −

cd0
2c̃
p−αd+α
α bn exp

( c̃(p1−α
α − i1−α)

1− α
)
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≥ Crd−1
i bn.

The proof is complete.

B Proofs for results of DC-SGD in Section 4.1

B.1 Proof of Theorem 4.1

By Condition (C1), we have
√

(p log n)/m → 0. Without loss of generality, we can assume that√
(p log n)/m = o(dn). Let δi = zi − θ∗ and ḡ(θ, ξ) = g(θ, ξ)− Eg(θ, ξ). Define

Θ0 = {θ ∈ Rp : ‖θ − θ∗‖2 ≤ c4},

where c4 is given in (27). Define the events Fi = {‖δi−1‖2 ≤ dn}, and

Ci =
{

sup
θ∈Θ0

∥∥∥ 1

m

∑
j∈Hi

ḡ(θ, ξj)
∥∥∥

2
≤ C

√
p log n

m

}
,

where C is sufficiently large. From the SGD updating rule (6), we have

‖δi‖22 = ‖δi−1‖22 − 2
ri
m

∑
j∈Hi

δ′i−1g(zi−1, ξj) +
∥∥∥ ri
m

∑
j∈Hi

g(zi−1, ξj)
∥∥∥2

2
. (33)

Since G(θ) = Eg(θ, ξ) and G(θ∗) = 0 by (15) and (C2),

ri
m

∑
j∈Hi

δ′i−1g(zi−1, ξj) = riδ
′
i−1G(zi−1) +

ri
m

∑
j∈Hi

δ′i−1ḡ(zi−1, ξj)

= riδ
′
i−1

(
G(zi−1)−G(θ∗)

)
+
ri
m

∑
j∈Hi

δ′i−1ḡ(zi−1, ξj)

≥ c1ri‖δi−1‖22 − C1ri‖δi−1‖32 − ri
∥∥δi−1

∥∥
2

∥∥∥ 1

m

∑
j∈Hi

ḡ(zi−1, ξj)
∥∥∥

2
.

Similarly,

ri
m

∑
j∈Hi

g(zi−1, ξj) = ri
(
G(zi−1)−G(θ∗)

)
+
ri
m

∑
j∈Hi

ḡ(zi−1, ξj)

and ∥∥∥ ri
m

∑
j∈Hi

g(zi−1, ξj)
∥∥∥2

2
≤ 2r2

i ‖G(zi−1)−G(θ∗)‖22 + 2
∥∥∥ ri
m

∑
j∈Hi

ḡ(zi−1, ξj)
∥∥∥2

2

≤ r2
i c
−2
1 ‖δi−1‖22 + C2

1r
2
i ‖δi−1‖42 + 2

∥∥∥ ri
m

∑
j∈Hi

ḡ(zi−1, ξj)
∥∥∥2

2
.

Therefore, on Ci ∩ Fi, since supi≥1 ri = o(1),

‖δi‖22 ≤ (1− c1ri)‖δi−1‖22 + C
(
ridn

√
p log n

m
+ r2

i

p log n

m
+ rid

3
n + r2

i d
2
n + r2

i d
4
n

)
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≤ (1− c1ri/2)d2
n + Cri

p log n

m
,

where we used the inequality dn

√
p logn
m ≤ td2

n + t−1(p log n)/m for any small t > 0. Note that√
(p log n)/m = o(dn). Therefore, Fi∩Ci ⊂ {‖δi‖2 ≤ dn} = Fi+1. Combining the above arguments

for j = 1, 2, . . . , i, on the event {‖θ̂0 − θ∗‖2 ≤ dn} ∩ (∩ik=1Ck), we have max1≤j≤i ‖δj‖2 ≤ dn.

We now assume sup‖v‖2=1 E supθ exp(t0|v′g(θ, ξ)|) ≤ C (by Condition (C3) bullet 1 or (C3∗)).

We have

‖δi‖2 ≤ ‖δi−1‖2 +
ri
m

∑
j∈Hi

sup
θ
‖g(θ, ξj)‖2 ≤ C

1

m

n∑
j=1

sup
θ
‖g(θ, ξj)‖2.

Thus E0‖δi‖62 ≤ Cn6 and E0‖δi‖82 ≤ Cn8. Recall that E0(·) is denoted by the expectation to {ξi}
given the initial estimator θ̂0. By G(θ∗) = 0,

E0

[ 1

m

∑
j∈Hi

δ′i−1g(zi−1, ξj)
]

= E0

[
δ′i−1G(zi−1)

]
= E0

[
δ′i−1Σ(z̃i−1)δi−1

]
,

where z̃i−1 = α̃zi−1 +(1− α̃)θ∗ for some α̃ ∈ (0, 1). Then on the event {‖θ̂0−θ∗‖2 ≤ dn}, by (C2),

Lemma A.3, and E0‖δi−1‖62 ≤ Cn6,

E0

[
δ′i−1Σ(z̃i−1)δi−1

]
≥ E0

[
δ′i−1Σδi−1

]
− C1dnE0‖δi−1‖22I{∩ik=1Ck}

−E0

[∣∣δ′i−1

(
Σ(z̃i−1)−Σ

)
δi−1

∣∣]I{{∩ik=1Ck}c}
≥ c1E0‖δi−1‖22 − C1dnE0‖δi−1‖22 − C1E0

[
‖δi−1‖32I{{∩ik=1Ci}c}

]
≥ 2−1c1E0‖δi−1‖22 − C1E0

[
‖δi−1‖32I{{∩ik=1Ci}c}

]
≥ 2−1c1E0‖δi−1‖22 − Cn3−γ (34)

for any γ > 0. Also, on the event {‖θ̂0 − θ∗‖2 ≤ dn},

E0

∥∥∥ 1

m

∑
j∈Hi

g(zi−1, ξj)
∥∥∥2

2
= E0‖G(zi−1)‖22 + E0

∥∥∥ 1

m

∑
j∈Hi

ḡ(zi−1, ξj)
∥∥∥2

2

≤ c−1
1 E0‖δi−1‖22 + CE0‖δi−1‖42 +

Cp

m
. (35)

Moreover, on the event {‖θ̂0 − θ∗‖2 ≤ dn},

E0‖δi−1‖42 ≤ d2
nE0‖δi−1‖22 + (E0‖δi−1‖82 · P0{‖δi−1‖2 > dn})1/2

≤ d2
nE0‖δi−1‖22 + (E0‖δi−1‖82 · P(∪i−1

k=1C
c
k))

1/2

≤ d2
nE0‖δi−1‖22 + Cn4−γ

for any γ > 0. Therefore, on the event {‖θ̂0 − θ∗‖2 ≤ dn},

E0

[
‖δi‖22

]
≤ (1− cri/2)E0‖δi−1‖22 + Cr2

i

p

m
, (36)
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which by Lemma A.4 implies that for any τ > 0, γ > 0 and all i ≥ p1/α+τ , E0‖δi‖22 ≤ C1(p/(iαm)+

i−γ). By (C1), we have s = n/m ≥ p1/α+τ2 . That is, E0‖δs‖22 ≤ C1p/(n
αm1−α).

Now consider the setting that Condition (C3) holds with bullet 2: c1 ≤ λmin(Σ(θ)) ≤ λmax(Σ(θ)) ≤
c−1

1 uniformly in θ. Then we have c1 ≤ λmin(Σ(z̃i−1)) ≤ λmax(Σ(z̃i−1)) ≤ c−1
1 . Therefore

E0

[ 1

m

∑
j∈Hi

δ′i−1g(zi−1, ξj)
]

= E0

[
δ′i−1Σ(z̃i−1)δi−1

]
≥ c1E0‖δi−1‖22.

Also by (C3),

E0

∥∥ḡ(zi−1, ξj)
∥∥2

2
= E0

(
E0

[∥∥ḡ(zi−1, ξj)
∥∥2

2

∣∣zi−1

])
≤ 2E0

(
E0

[∥∥ḡ(zi−1, ξj)− ḡ(θ∗, ξj)
∥∥2

2

∣∣zi−1

])
+ Cp

≤ CpE0‖δi−1‖22 + Cp.

So

E0

∥∥∥ 1

m

∑
j∈Hi

g(zi−1, ξj)
∥∥∥2

2
≤ 2E0‖G(zi−1)‖22 + 2E0

∥∥∥ 1

m

∑
j∈Hi

ḡ(zi−1, ξj)
∥∥∥2

2

≤ CE0‖δi−1‖22 + C
p

m
E0‖δi−1‖22 + C

p

m
.

That is, (36) still holds and E0‖δs‖22 ≤ Cp/(nαm1−α).

We now consider the bias of E0zi. We have

E0

[ 1

m

∑
j∈Hi

g(zi−1, ξj)
]

= E0

(
G(zi−1)−G(θ∗)

)
= ΣE0δi−1 + E0(Σ(z′i)−Σ)δi−1

and ‖(Σ(z′i) − Σ)δi−1‖2 ≤ C‖δi−1‖22. Therefore, on the event {‖θ̂0 − θ∗‖2 ≤ dn}, for any τ > 0,

0 < µ < 1 and i ≥ max(p1/α+τ/2, (n/m)µ),

‖E0δi‖2 ≤ ‖I − riΣ‖‖E0δi−1‖2 + CriE0‖δi−1‖22
≤ (1− c1ri)‖E0δi−1‖2 + CriE0‖δi−1‖22
≤ (1− c1ri)‖E0δi−1‖2 + Cr2

i

p

m
+ Ci−γ

≤ (1− c1ri)‖E0δi−1‖2 + Cr2
i

p

m
,

by noting that γ > 0 can be arbitrarily large. Let qα = max(p1/α+τ/2, (n/m)µ). Then for any

γ > 0,

‖E0δs‖2 ≤
s∏

j=qα+1

(1− c1rj)‖E0δqα‖2 +
p

m

s∑
k=qα+1

r2
k

i−1∏
j=k

(1− crj+1)

≤ C(qα/s)
c̃ + Crs

p

m
+ Cs−γ ,

where c̃ is sufficiently large. Therefore, by the proof of Lemma A.4, ‖E0δs‖2 ≤ C1p/(n
αm1−α).
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B.2 Proof of Proposition 4.2

Since sup‖v‖2=1 supθ E(v′g(θ, ξ))2 ≤ C, by the independence between ξj and zi−1, we have

E(δ′i−1g(zi−1, ξj))
2 ≤ C‖δi−1‖22.

By (33), we have

E‖δi‖22 ≥ E‖δi−1‖22 −
2ri
m

∑
j∈Hi

Eδ′i−1g(θi−1, ξj)

≥ E‖δi−1‖22 − Cri
√

E‖δi−1‖22
≥ min

(
(1− Cri/pν)p2ν ,E‖δi−1‖22 − Cripν

)
≥ min

(
(1− Cri/pν)p2ν , (1− Cri−1/p

ν)p2ν − Cripν ,

E‖δi−2‖22 − Cripν − Cri−1p
ν
)

≥ (1− C/pν)p2ν − C
i∑

j=1

rjp
ν .

Note that
∑i

j=1 rj = O(i1−α) when 0 < α < 1 and
∑i

j=1 rj = O(log i) when α = 1, So if α = 1 and

log(n/m) = o(pν), or if 0 < α < 1 and n/m = o(pν/(1−α)), we have E‖δs‖22 ≥ Cp2ν .

B.3 Proof of Theorem 4.3

Denote by θ̂
(k)
SGD the local mini-batch SGD estimator on machine k. Since ξi’s are i.i.d. and

independent to the initial estimator θ̂0, by N = nL and Theorem 4.1,

E0‖θ̂DC − θ∗‖22 = E0

∥∥∥ 1

L

L∑
k=1

(θ̂
(k)
SGD − θ

∗)
∥∥∥2

2

≤ E0

∥∥∥ 1

L

L∑
k=1

{
(θ̂

(k)
SGD − θ

∗)− E0(θ̂
(k)
SGD − θ

∗)
}∥∥∥2

2

+
∥∥E0(θ̂

(1)
SGD − θ

∗)
∥∥2

2

= O
( p

Lm1−αnα

)
+O

(( p

m1−αnα
)2)

= O
( p

L1−αm1−αNα
+

p2

L−2αm2−2αN2α

)
. (37)

B.4 Proof of the lower bound of bias for Example 3.1

We first provide an upper bound for E0‖δi−1‖32. On the event {‖θ̂0 − θ∗‖2 ≤ dn},

E0‖δi−1‖32 = E0‖δi−1‖32I{∩ij=1Cj}+ E0‖δi−1‖32I{{∩ij=1Cj}c}
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≤ min(d3
n, dnE0‖δi−1‖22) + Cn3−γ

for any γ > 0. Therefore max1≤i≤s E0‖δi−1‖32 = o(1) and

E0‖δi−1‖32 = o(1)E0‖δi−1‖22 +O(n3−γ). (38)

We next prove that E0‖δi‖22 ≥ crip/m for any τ > 0 and i ≥ p1/α+τ . Recall that

‖δi‖22 = ‖δi−1‖22 − 2
ri
m

∑
j∈Hi

δ′i−1g(zi−1, ξj) +
∥∥∥ ri
m

∑
j∈Hi

g(zi−1, ξj)
∥∥∥2

2

=: ‖δi−1‖22 − 2riU1 + r2
iU2. (39)

Note that E0δ
′
i−1g(zi−1, ξj) = E0δ

′
i−1G(zi−1). Hence from the proof of (34) and (38),

E0U1 =
1

m

∑
j∈Hi

E0δ
′
i−1g(zi−1, ξj) ≤ CE0‖δi−1‖22 + Cn3−γ

for any sufficiently large γ > 0. For U2,

E0

∥∥∥ 1

m

∑
j∈Hi

g(zi−1, ξj)
∥∥∥2

2
≥ E0

∥∥∥ 1

m

∑
j∈Hi

ḡ(zi−1, ξj)
∥∥∥2

2

=

∑
j∈Hi

(
E0‖g(zi−1, ξj)‖22 − E0‖G(zi−1)‖22

)
m2

Recall that G(θ) = Eg(θ, ξ) = E
(

X
1+e−X′θ∗

− X
1+e−X′θ

)
. We have

‖G(θ)‖22 =
∥∥∥E( X

1 + e−X′θ∗
− X

1 + e−X′θ
)∥∥∥2

2
≤ Cp‖θ − θ∗‖22.

So we have E0‖G(zi−1)‖22 ≤ CpE0‖δi−1‖22 = o(p). Also

E0‖g(zi−1, ξj)‖22 = E0
‖Xj‖22

(1 + e−X
′
jzi−1)2

≥ E
‖Xj‖22

(1 + e−X
′
jθ
∗
)2
− CpE0‖δi−1‖2 ≥ Cp.

This yields that

E0‖δi‖22 ≥ (1− cri)E0‖δi−1‖22 + Cr2
i

p

m

for some positive constants c and C. Then by Lemma A.4, E0‖δi‖22 ≥ c1rip/m for all i ≥ p1/α+τ/2.

Now by θ∗ = (1, 0, ...0)′, EXi = 0 for 1 ≤ i ≤ p− 1 and Taylor’s formulation, we have

E0δi,1 = E0δi−1,1 −
ri
m

∑
j∈Hi

E0g(zi−1, ξj)

= E0δi−1,1 − ri
e

(1 + e)2
E0δi−1,1 + ri

e2 − e
2(1 + e)3

E0δ
′
i−1Σδi−1 +O(ri)E0‖δi−1‖32.
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By (38), we have

E0δi,1 ≥ (1− cri)E0δi−1,1 + Cr2
i p/m

for some positive c and C and all i ≥ p1/α+τ/2. Noting that
∏s
j=p1/α+τ/2+1(1 − crj) = O(n−γ) for

any γ > 0 by letting c0 in ri be sufficiently large, by the proof of the second claim in Lemma A.4,

E0δs,1 ≥ C
p

m

s∑
k=p1/α+τ/2+1

r2
k

i−1∏
j=k

(1− crj+1)

+E0δp1/α+τ/2,1

s∏
j=p1/α+τ/2+1

(1− crj)

≥ Crsp/m,

which completes the proof.

B.5 Proof of the lower bound of bias for Example 3.2

As above, we can show that max1≤i≤s E0‖δi−1‖32 = o(1) and E0‖δi−1‖32 = o(1)E0‖δi−1‖22 +O(n3−γ).

Also, similarly,

E0U1 ≤ CE0‖δi−1‖22 + Cn3−γ

for any sufficiently large γ > 0. Note that

E0‖G(zi−1)‖22 ≤ E0‖Xj‖22
(
F (X ′jδi−1)− τ

)2
≤ CE0‖Xj‖22(X ′jδi−1)2 ≤ CpE0‖δi−1‖22.

Also

E0‖g(zi−1, ξj)‖22 = E0‖Xj‖22(F (X ′jδi−1) + τ2 − 2τF (X ′jδi−1))

≥ τ(1− τ)E0‖Xj‖22 − CpE0‖δi−1‖2
≥ Cp.

Then by Lemma A.4, we have E0‖δi‖22 ≥ crip/m for all i ≥ p1/α+τ/2.

Since EXi = 0 for 1 ≤ i ≤ p− 1, we have for i ≥ p1/α+τ/2,

E0δi,1 = E0δi−1,1 −
ri
m

∑
j∈Hi

E0g(zi−1, ξj)

= E0δi−1,1 −
ri
m

∑
j∈Hi

E0[F (X ′jδi−1)− F (0)]

= (1− riF ′(0))E0δi−1,1 + riF
′′
(0)E0δ

′
i−1Σδi−1 +O(riE0‖δi−1‖3)

≥ (1− riF ′(0))E0δi−1,1 + cF
′′
(0)r2

i p/m.

So we have E0δs,1 ≥ Crsp/m.
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C Proofs for results of FONE in Section 4.2

C.1 Proof of Proposition 4.4

Define

Et =
{

sup
‖θ1 − θ∗‖2 ≤ c4,
‖θ2 − θ∗‖2 ≤ c4

∥∥∥ 1
m

∑
i∈Bt [ḡ(θ1, ξi)− ḡ(θ2, ξi)]

∥∥∥
2√

‖θ1 − θ2‖22 + n−γ2
≤ c
√
p log n

m

}
.

In Lemma A.2, take u = (θ′1,θ
′
2)′, u0 = (θ′0,θ

′
0)′, q = 2p and h(u, ξ) = ḡ(θ1, ξ) − ḡ(θ2, ξ). Then

(C3) implies that (B1)–(B4) hold with α = 1, b(u) = C‖θ1−θ2‖22 and b(u) satisfies |b(u1)−b(u2)| ≤
C(1 + ‖θ∗‖2)‖u1 − u2‖2 ≤ C

√
p‖u1 − u2‖2. Therefore, by Lemma A.2,

P(Et) ≥ 1−O(n−γ)

for any large γ. Now take m = n and define

E =
{

sup
‖θ1 − θ∗‖2 ≤ c4,
‖θ2 − θ∗‖2 ≤ c4

∥∥∥ 1
n

∑n
i=1[ḡ(θ1, ξi)− ḡ(θ2, ξi)]

∥∥∥
2√

‖θ1 − θ2‖22 + n−γ2
≤ c
√
p log n

n

}
.

Then for any γ2, γ > 0,

P(E) ≥ 1−O(n−γ).

Recall

zt = zt−1 − ηt
( 1

m

∑
i∈Bt

[g(zt−1, ξi)− g(θ̂0, ξi)] + a
)
.

Let the eventA = {‖θ̂0−θ∗‖2 ≤ dn, ‖a‖2 ≤ τn} with dn, τn → 0, and Bt = {‖zt−1−(θ̂0−Σ−1a)‖2 ≤
bn} with bn → 0, p logn

m ≤ b2n and τn = o(bn). Note that on A∩Bt, we have ‖zt−1−θ∗‖2 ≤ C(bn+dn).

Define Dt = A ∩ ∩ti=1Ci, where Ci is defined in the proof of Theorem 4.1.

We first prove that on Dt, max1≤i≤t ‖zi − (θ̂0 −Σ−1a)‖2 ≤ bn. Let δ̃t = zt − (θ̂0 −Σ−1a) and

∆(zt−1) =
1

m

∑
i∈Bt

[g(zt−1, ξi)− g(θ̂0, ξi)]− [G(zt−1)−G(θ̂0)].

We have

δ̃t = δ̃t−1 − ηt
(
G(zt−1)−G(θ̂0) + ∆(zt−1) + a

)
and

‖δ̃t‖22 = ‖δ̃t−1‖22 − 2ηtδ̃
′
t−1[G(zt−1)−G(θ̂0)]− 2ηtδ̃

′
t−1(∆(zt−1) + a)

+η2
t

∥∥∥G(zt−1)−G(θ̂0) + ∆(zt−1) + a
∥∥∥2

2
. (40)
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Note that G(zt−1)−G(θ̂0) = Σ(z∗t−1)(zt−1 − θ̂0), where z∗t−1 is between zt−1 and θ̂0 and satisfies

‖z∗t−1 − θ∗‖2 ≤ ‖θ̂0 − θ∗‖2 + ‖zt−1 − θ̂0‖2. So we have

δ̃′t−1[G(zt−1)−G(θ̂0)] + δ̃′t−1(∆(zt−1) + a)

= δ̃′t−1Σ(z∗t−1)(zt−1 − θ̂0) + δ̃′t−1a+ δ̃′t−1∆(zt−1)

= δ̃′t−1Σ(z∗t−1)δ̃t−1 − δ̃′t−1[Σ(z∗t−1)Σ−1 − I]a+ δ̃′t−1∆(zt−1). (41)

On A∩Bt, by (C2), we have 2c−1
1 ≥ λmax(Σ(z∗t−1)) ≥ λmin(Σ(z∗t−1)) ≥ c1/2 since dn, bn → 0. Also∥∥δ̃′t−1[Σ(z∗t−1)Σ−1 − I]a

∥∥
2

≤ C1‖δ̃t−1‖2‖z∗t−1 − θ∗‖2‖Σ−1a‖2
≤ C1‖δ̃t−1‖2

(
‖θ̂0 − θ∗‖2 + ‖zt−1 − θ̂0‖2

)
‖Σ−1a‖2

= C1‖δ̃t−1‖2
(
‖θ̂0 − θ∗‖2 + ‖δ̃t−1 −Σ−1a‖2

)
‖Σ−1a‖2

≤ C
(
τn‖δ̃t−1‖2‖θ̂0 − θ∗‖2 + τ2

n‖δ̃t−1‖2 + τn‖δ̃t−1‖22
)
. (42)

Furthermore, on Dt ∩ Bt, we have that

‖δ̃′t−1∆(zt−1)‖2 ≤ C
√
p log n

m
‖δ̃′t−1‖2 (43)

and ∥∥G(zt−1)−G(θ̂0) + ∆(zt−1) + a
∥∥2

2

≤ C
(
‖zt−1 − θ̂0‖22 + ‖∆(zt−1)‖22 + τ2

n

)
≤ C(

p log n

m
+ τ2

n) + C‖δ̃t−1‖22. (44)

Since ηt ≤ c for some small enough c > 0, by (40)-(44), we have, on Dt ∩ Bt,

‖δ̃t‖22 ≤ ‖δ̃t−1‖22 − ηtδ̃′t−1Σ(z∗t−1)δ̃t−1 + Cη2
t ‖δ̃t−1‖22 + ηtτn‖δ̃t−1‖22

+Cηt

(
τn‖δ̃t−1‖2‖θ̂0 − θ∗‖2 + τ2

n‖δ̃t−1‖2 +

√
p log n

m
‖δ̃′t−1‖2

)
+C3η

2
t (
p log n

m
+ τ2

n)

≤ ‖δ̃t−1‖22 − C1ηt‖δ̃t−1‖22 + C2ηt(τ
2
n‖θ̂0 − θ∗‖22 + τ4

n +
p log n

m
)

+C3η
2
t (
p log n

m
+ τ2

n)

≤ b2n − C1ηtb
2
n + C2ηt(τ

2
n‖θ̂0 − θ∗‖22 + τ4

n +
p log n

m
)

+C3η
2
t (
p log n

m
+ τ2

n).

Note that

τ2
n‖θ̂0 − θ∗‖22 + τ4

n +
p log n

m
+ ηt(

p log n

m
+ τ2

n) = o(b2n).
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So we have on Dt ∩ Bt, ‖δ̃t‖22 ≤ b2n. Combining the above arguments,

{max
1≤i≤t

‖δ̃i‖2 > bn} ∩ Dt = {max
1≤i≤t

‖δ̃i‖2 > bn, max
1≤i≤t−1

‖δ̃i‖ ≤ bn} ∩ Dt

+{max
1≤i≤t

‖δ̃i‖2 > bn, max
1≤i≤t−1

‖δ̃i‖2 > bn} ∩ Dt

⊂ { max
1≤i≤t−1

‖δ̃i‖2 > bn} ∩ Dt

⊂ {‖δ̃0‖2 > bn} ∩ Dt = ∅,

where the last inequality follows from ‖δ̃0‖ ≤ bn due to τn = o(bn). This proves that max1≤i≤t ‖zi−
(θ̂0 − τnΣ−1a)‖2 ≤ bn on Dt, i.e., Dt ⊂ ∩t+1

i=1Bi.
Now let E∗(·) be the expectation to the random set {Bt, t ≥ 1} given {ξ1, ξ2, . . . , ξn}. Let

∆n(zt−1) =
1

n

n∑
i=1

[g(zt−1, ξi)− g(θ̂0, ξi)]− [G(zt−1)−G(θ̂0)].

Let D̃t = Dt ∩ E ∩ C. As in each iteration, Bt, 1 ≤ t ≤ T are independent, we have

E∗
[
δ̃′t−1∆(zt−1)I{D̃t−1}

]
= E∗

[
E∗
[
δ̃′t−1∆(zt−1)I{D̃t−1}|{Bi, 1 ≤ i ≤ t− 1}

]]
= E∗

[
δ̃′t−1∆n(zt−1)I{D̃t−1}

]
.

Note that I{D̃t} = I{D̃t−1} − I{D̃t−1 ∩ Cct }. Thus

E∗
[
δ̃′t−1∆(zt−1)I{D̃t}

]
= E∗

[
δ̃′t−1∆n(zt−1)I{D̃t−1}

]
− E∗

[
δ̃′t−1∆(zt−1)I{D̃t−1 ∩ Cct }

]
. (45)

By (C3), we can get

E sup
‖θ−θ∗‖2≤c4

‖g(θ, ξ)‖22 ≤ nc5

for some c4, c5 > 0. Note that on Dt−1, we have ‖δ̃t−1‖ ≤ bn and

‖∆(zt−1)‖2 ≤ 2
1

m

∑
i∈Bt

sup
‖θ−θ∗‖2≤C(bn+dn)

‖g(θ, ξi)−G(θ)‖2.

Hence

E
∣∣∣E∗[δ̃′t−1∆(zt−1)I{D̃t−1 ∩ Cct }

]∣∣∣ = O(nc5/2−γ)

and

E
∣∣∣E∗[∥∥G(zt−1)−G(θ̂0) + ∆(zt−1) + a

∥∥2

2
I{D̃t−1 ∩ Ect }

]∣∣∣ = O(n−γ)

for any large γ > 0 (by choosing c in Et sufficiently large). On Dt−1 ∩ E ,

‖δ̃′t−1∆n(zt−1)‖2 ≤ C

√
p log n

n

∥∥zt−1 − θ̂0

∥∥
2
‖δ̃t−1‖2 + Cn−γ2/2
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≤ C

√
p log n

n
‖δ̃t−1‖22 + Cτn

√
p log n

n
‖δ̃t−1‖2 + Cn−γ2/2. (46)

Similarly as above, on Dt ∩ Et, we have∥∥∥G(zt−1)−G(θ̂0) + ∆(zt−1) + a
∥∥∥2

2

≤ C(
p log n

m
‖zt−1 − θ̂0‖22 + τ2

n) + C‖zt−1 − θ̂0‖22 + Cn−γ2

≤ C‖δ̃t−1‖22 + Cn−γ2 + Cτ2
n. (47)

By (40)-(42) and (45)-(47),

E[‖δ̃t‖22I{D̃t}] ≤ (1− C1ηn)E[‖δ̃t−1‖22I{D̃t−1}]

+C2ηn(τ2
nd

2
n + τ4

n +
p log n

n
τ2
n + n−γ2/2)

+Cη2
n(n−γ2 + τ2

n),

where we used I{D̃t} ≤ I{D̃t−1}. This implies that

E
[
‖δ̃t‖22I{D̃t}

]
≤ (1− C1ηn)tE

[
‖δ̃0‖22I{A ∩ E ∩ C}

]
+

1− (1− C1ηn)t

C1ηn

[
Cηn(τ2

nd
2
n + τ4

n +
p log n

n
τ2
n + n−γ2/2)

+Cη2
n(n−γ2 + τ2

n)
]
.

Note that (1− C1ηn)t ≤ exp(−C1ηnt). Then as long as log(n) = o(ηnt),

E[‖δ̃t‖22I{D̃t}] ≤ C(τ2
nd

2
n + τ4

n +
p log n

n
τ2
n + n−γ2/2) + Cηn(n−γ2 + τ2

n).

Therefore, since T = O(nA) for some A > 0, we have P({E ∩ ∩Ti=1Ei}c) = O(n−γ) and P({C ∩
∩Ti=1Ci}c) = O(n−γ) for any γ > 0. That is, when P(Ac) = o(1), we have

‖δ̃T ‖2 = OP(τndn + τ2
n +

√
p log n

n
τn +

√
ηnτn + n−γ2/4).

This proves the theorem.

C.2 Proof of Theorem 4.5

Since f(θ, ξ) is differentiable, we have 1
N

∑N
i=1 g(θ̂, ξi) = 0. Denote by

EN =

 sup
‖θ1 − θ∗‖2 ≤ c4,
‖θ2 − θ∗‖2 ≤ c4

∥∥∥ 1
N

∑N
i=1[ḡ(θ1, ξi)− ḡ(θ2, ξi)]

∥∥∥
2√

‖θ1 − θ2‖22 +N−γ2
≤ c
√
p logN

N

 .

By the proof of Proposition 4.4, we have P(EN ) ≥ 1 − O(N−γ) for any large γ. Therefore, on the

event EN ∩ {‖θ̂j−1 − θ∗‖2 + ‖θ̂ − θ∗‖2 ≤ c2}, in the j-th round in Algorithm 3,

a =
1

N

N∑
i=1

[g(θ̂j−1, ξi)− g(θ̂, ξi)]
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= G(θ̂j−1)−G(θ̂) +O
(√p logN

N
‖θ̂j−1 − θ̂‖2 +N−γ2/2

)
= Σ(θ̃)(θ̂j−1 − θ̂) +O

(√p logN

N
‖θ̂j−1 − θ̂‖2 +N−γ2/2

)
= Σ(θ∗)(θ̂j−1 − θ̂) +O

(√p logN

N
‖θ̂j−1 − θ̂‖2 +N−γ2/2

)
+O
(
‖θ̂j−1 − θ̂‖22 + ‖θ̂j−1 − θ̂‖2‖θ̂j−1 − θ∗‖2

)
where θ̃ is between θ̂j−1 and θ̂ and satisfies ‖θ̃ − θ∗‖2 ≤ ‖θ̂ − θ∗‖2 + ‖θ̂j−1 − θ∗‖2. In above and

throughout the paper, for a sequence of vector {xn}, we write xn = O(an) if ‖xn‖2 = O(an) for

simplicity. Now, in the first round of iteration, i.e., j = 1, we have ‖θ̂0 − θ̂‖2 = OP(n−δ1). Then

we can let τn = Cn−δ1 with some large constant C. By Proposition 4.4, we have

‖θ̂1 − θ̂‖2 = OP(n−2δ1 +

√
p log n

n
n−δ1 + n−δ1−δ2/2 + n−γ).

This yields that ‖θ̂1−θ̂‖2 = OP(n−δ1−r+n−γ) with r = min(δ1, δ2/2, (1−κ1)/2). Now in the second

round of iteration, we let dn = n−δ1 and τn = C(n−δ1−r+n−γ). Then ‖θ̂2−θ̂‖2 = OP(n−δ1−2r+n−γ).

Repeating this argument, we can show that ‖|̂θK − θ̂‖2 = OP(n−δ1−Kr + n−γ) which proves the

theorem since γ can be arbitrarily large.

C.3 Proof of Proposition 4.6

Note that (C3∗) implies that (B4∗) holds with α = 0. Define

Et =
{

sup
‖θ1 − θ∗‖2 ≤ c4,
‖θ2 − θ∗‖2 ≤ c4

∥∥∥ 1
m

∑
i∈Bt [ḡ(θ1, ξi)− ḡ(θ2, ξi)]

∥∥∥
2√

‖θ1 − θ2‖2 + p logn
m

≤ c
√
p log n

m

}

and

E =
{

sup
‖θ1 − θ∗‖2 ≤ c4,
‖θ2 − θ∗‖2 ≤ c4

∥∥∥ 1
n

∑n
i=1[ḡ(θ1, ξi)− ḡ(θ2, ξi)]

∥∥∥
2√

‖θ1 − θ2‖2 + p logn
n

≤ c
√
p log n

n

}
.

We have by Lemma A.2 that P(E ∩ ∩Tt=1Et) ≥ 1−O(n−γ) for any γ > 0.

On Dt−1 ∩ E ,

‖δ̃′t−1∆n(zt−1)‖ ≤ C

√
p log n

n
‖zt−1 − θ̂0‖1/22 ‖δ̃t−1‖2 + C

p log n

n
‖δ̃t−1‖2 + Cn−γ2/2

≤ C

√
p log n

n
‖δ̃t−1‖3/22 + C(τ1/2

n

√
p log n

n
+
p log n

n
)‖δ̃t−1‖2 + Cn−γ2/2.

Similarly, on Dt−1 ∩ Et, we have∥∥∥G(zt−1)−G(θ̂0) + ∆(zt−1) + a
∥∥∥2

2
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≤ C
(p log n

m
‖zt−1 − θ̂0‖2 +

(p log n

m

)2
+ τ2

n

)
+ C‖zt−1 − θ̂0‖22 + Cn−γ2

≤ C‖δ̃t−1‖22 +
(p log n

m

)2
+ Cτ2

n.

So as the proof of Proposition 4.4, we can get

‖δ̃T ‖2 = OP

(
τn
p log n

n
+
(p log n

n

)2
+ ηn

(p log n

m

)2
+ τ2

nd
2
n + ηnτ

2
n + τ4

n

)
.

The proof is complete.

C.4 Proof of Thoerem 4.7

Note that ‖θ̂0 − θ∗‖2 + ‖θ̂ − θ∗‖2 = OP(n−δ1) and thus dn = O(n−δ1). For any 0 < δ < 1, by

Holder’s inequality, we have

τn
p log n

n
≤ τ2+2δ

n +
(p log n

n

) 2+2δ
1+2δ

.

This indicates that

‖δ̃T ‖2 = OP

(
τ1+δ
n +

(p log n

n

) 1+δ
1+2δ +

√
ηn
p log n

m
+ τnn

−r1
)

with r1 = min(δ1, δ2/2). Now we estimate τn. Let τnj be the value of τn in the j-th round. We

have

a =
1

N

N∑
i=1

[g(θ̂j−1, ξi)− g(θ̂, ξi)] +OP

(qN
N

)
= G(θ̂j−1)−G(θ̂) +OP(1)

(√p logN

N
‖θ̂j−1 − θ̂‖1/22 +

qN + p logN

N

)
= Σ(θ̂j−1 − θ̂) +OP(1)

(√p logN

N
‖θ̂j−1 − θ̂‖1/22 + ‖θ̂j−1 − θ̂‖22

+‖θ̂j−1 − θ̂‖2‖θ̂ − θ∗‖2 +
qN + p logN

N

)
=: Σ(θ̂j−1 − θ̂) +Anj .

So on the event

Ej−1 :=
{
‖θ̂j−1 − θ̂‖2 ≤ Cn−bj−1 + C

qN
N

+ C
(p log n

n

) 1+δ
1+2δ

+
√
ηn
p log n

m

}
for some bj−1 > 0, we have

τnj ≤ Cn−bj−1 + C
qN
N

+ C
(p logN

N

) 1+δ
1+2δ

+ C
√
ηn
p log n

m

and

‖Anj‖2 ≤ Cn−bj−1(1+δ) + Cn−bj−1−r1 + C
qN
N

+ C
(p logN

N

) 1+δ
1+2δ

+
√
ηn
p log n

m
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by noting that √
p logN

N
‖θ̂j−1 − θ̂‖1/22 ≤ ‖θ̂j−1 − θ̂‖1+δ

2 +
(p logN

N

) 1+δ
1+2δ

.

Hence on the event Ej−1, we have

‖θ̂j − θ̂‖2 ≤ ‖δ̃T ‖2 + ‖Anj‖2

≤ Cn−bj−1(1+δ) + Cn−bj−1−r1/2 + C
qN
N

+ C
(p log n

n

) 1+δ
1+2δ

+ C
√
ηn
p log n

m
.

Note that we can let b0 = δ1. Then it is easy to see that we can let bj ≥ δ1 for all j. Hence bj

satisfies bj ≥ bj−1 + min(δδ1, r1/2). This proves that

‖θ̂K − θ̂‖2 = OP

(
n−δ1−K min(δδ1,r1/2) +

qN
N

+
(p log n

n

) 1+δ
1+2δ

+ C
√
ηn
p log n

m

)
.

The proof is complete.

C.5 Proof of Theorem 4.8

By Proposition 4.4, we have Σ̂−1w = (θ̂0 − zT )/τn and

‖θ̂0 − zT −Σ−1τnw‖2 = OP

(
τndn + τ2

n +

√
p log n

n
τn +

√
ηnτn + n−γ

)
.

Therefore, when τn =
√

(p log n)/n, we have

∥∥Σ̂−1w −Σ−1w
∥∥

2
= OP

(√p log n

n
+
√
ηn + dn

)
.

C.6 Proof of Theorem 4.9

By Proposition 4.6, we have Σ̂−1w = (θ̂0 − zT )/τn and

‖θ̂0 − zT −Σ−1τnw‖2 = OP

(
τndn + τ2

n +

√
p log n

n

√
τn +

p log n

m

√
ηn +

√
ηnτn +

p log n

n

)
.

Therefore, when τn =
(
(p log n)/n

)1/3
, we have

∥∥Σ̂−1w −Σ−1w
∥∥

2
= OP

(√p log n

nτn
+ τn +

(p log n

τnm
+ 1
)√
ηn + dn

)
= OP

((p log n

n

)1/3
+
√
ηn
(n1/3(p log n)2/3

m
+ 1
)

+ dn

)
.
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D Verification of Conditions on motivating examples

In this section, we provide verification of the conditions (C2), (C3) and (C3∗) on Examples 3.1 and

3.2.

Example 3.1. For a logistic regression model with ξ = (Y,X),

P(Y = 1|X) = 1− P(Y = −1|X) =
1

1 + exp(−X ′θ∗)
.

We have f(θ, ξ) = log(1+exp(−YX ′θ)), and g(θ, ξ) = −YX
1+exp(YX′θ) . Note that G(θ) = E

(
X

1+e−X′θ∗
− X

1+e−X′θ

)
is differentiable in θ. Moreover, we have,

Σ(θ) = E
XX ′

[1 + exp(X ′θ)][1 + exp(−X ′θ)]
.

Proposition D.1. In Example 3.1, assume that c̃1 ≤ λmin(E(XX
′
)) ≤ λmax(E(XX

′
)) ≤ c̃−1

1 for

some c̃1 > 0 and sup‖v‖2=1 E|v
′
X|3 ≤ C̃1 for some C̃1 > 0.

(1) We have λmax(Σ(θ)) is bounded uniformly in θ. Furthermore, if ‖θ∗‖2 ≤ C̃2, then λmin(Σ(θ∗)) ≥
c1 for some c1 > 0 and (C2) holds.

(2) If the covariates X satisfy sup‖v‖2=1 E exp(t0(v
′
X)2) ≤ C̃2 for some t0, C̃2 > 0, then (C3)

holds.

Proof. Note that

‖Σ(θ)‖22 = sup
‖v‖2=1

E
(v
′
X)2

[1 + exp(X ′θ)][1 + exp(−X ′θ)]
≤ sup
‖v‖2=1

E(v
′
X)2 ≤ c̃−1

1 .

That is, λmax(Σ(θ)) is bounded uniformly in θ. Also,

λmin(Σ(θ∗)) = min
‖v‖2=1

E
(v
′
X)2

[1 + exp(X ′θ∗)][1 + exp(−X ′θ∗)]

≥ min
‖v‖2=1

E
(v
′
X)2

2(1 + eM )
I{|X ′θ∗| ≤M}

=
1

2(1 + eM )
min
‖v‖2=1

(
E(v

′
X)2 − E(v

′
X)2I{|X ′θ∗| > M}

)
≥ 1

2(1 + eM )
min
‖v‖2=1

(
E(v

′
X)2 − C̃1C̃2

M

)
=

1

2(1 + eM )

(
c̃1 −M−1C̃1C̃2

)
.

Now let M be a constant that satisfies M > C̃1C̃2/c̃1. This yields that λmin(Σ(θ∗)) ≥ c1 for some

c1 > 0. By noting that the derivative of (1 + ex)−1(1 + e−x)−1 is bounded by 3, we have

‖Σ(θ1)−Σ(θ2)‖ ≤ 3 sup
‖v‖2=1

E(v
′
X)2|X ′(θ1 − θ2)| ≤ 3C̃1‖θ1 − θ2‖2.
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This proves (C2). Similarly, the derivative of (1 + ex)−1 is bounded by 1, and hence for θ1 6= θ2,

|v′g(θ1, ξ)− v′g(θ2, ξ)| ≤ |v′X||X ′(θ1 − θ2)| ≤ U(v,θ1,θ2)‖θ1 − θ2‖2,

where U(v,θ1,θ2) = |v′X||X ′(θ1 − θ2)|/‖θ1 − θ2‖2. It is easy to see that

sup
‖v‖2=1

sup
θ1,θ2

E exp(t0U(v,θ1,θ2)) ≤ sup
‖v‖2=1

E exp(t0(v′X)2) ≤ C̃2,

and

sup
‖v‖2=1

E sup
θ1,θ2

U(v,θ1,θ2) ≤ sup
‖v‖2=1

E sup
‖θ‖2=1

|v′X||θ′X| ≤ Cp.

Therefore, U(v,θ1,θ2) satisfies (C3). At the meantime, since |v′g(θ, ξ)| ≤ |v′X| for any θ, and

sup‖v‖2=1 E exp(t0(v
′
X)2) ≤ C̃2 for some t0, C̃2 > 0, bullet (1) of (C3) holds for g(θ, ξ).

Example 3.2. For a quantile regression model,

y = X ′θ∗ + ε, P(ε ≤ 0|X) = τ.

We have the non-smooth quantile loss f(θ, ξ) = `(y −X ′θ) with `(x) = x(τ − I{x ≤ 0})), and

its subgradient g(θ, ξ) = X(I{y ≤ X ′θ} − τ). Then G(θ) = E[X(P(ε ≤ X ′(θ − θ∗)|X) − τ)].

Furthermore, we have Σ(θ) = E[XX ′ρX(X ′(θ − θ∗))], where ρX(·) is the density function of ε

given X.

Proposition D.2. Assume that

c1 ≤ λmin(E[XX ′ρX(0)]) ≤ λmax(E[XX ′ρX(0)]) ≤ c−1
1

for some c1 > 0 and sup‖v‖2=1 E|v
′
X|3 ≤ C̃1 for some C̃1 > 0. The density function ρX(x)

is bounded and satisfies |ρX(x1) − ρX(x2)| ≤ C̃|x1 − x2| for some C̃ > 0. Then (C2) holds.

Furthermore, if the covariates X satisfy sup‖v‖2=1 E exp(t0|v
′
X|) ≤ C̃2, then (C3∗) holds.

Proof. By the Lipschitz condition on ρX(x), we have

‖Σ(θ1)−Σ(θ2)‖2 ≤ C̃ sup
‖v‖2=1

E(v
′
X)2|X ′(θ1 − θ2)| ≤ C̃1C̃‖θ1 − θ2‖2.

Hence (C2) holds. Now we prove (C3∗). Since ρX(x) is bounded, we have

E
[

sup
θ2:‖θ1−θ2‖2≤n−M , ‖θ2−θ∗‖2≤c4

‖g(θ1, ξ)− g(θ2, ξ)‖42
]

≤ E
[
‖X‖42I

{
|X ′(θ1 − θ∗)| − ‖X‖2n−M ≤ ε ≤ |X ′(θ1 − θ∗)|+ ‖X‖2n−M

}]
≤ 2C̃E

[
‖X‖52n−M

]
≤ 2C̃p5/2n−M .
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Again,

E(v′(g(θ1, ξ)− g(θ2, ξ))2 exp{t0|v′(g(θ1, ξ)− g(θ2, ξ))|}
≤ E

[
(v′X)2(I{ε ≤X ′(θ1 − θ∗)} − I{ε ≤X

′
(θ2 − θ∗)})2 exp{t0|v′X|}

]
≤ E

[
(v′X)2I

{
X
′
(θ1 − θ∗) ≤ ε ≤X

′
(θ2 − θ∗)

}
exp{t0|v′X|}

]
+E
[
(v′X)2I

{
X
′
(θ2 − θ∗) ≤ ε ≤X

′
(θ1 − θ∗)

}
exp{t0|v′X|}

]
≤ 2C̃E

[
(v′X)2|X ′(θ1 − θ2)| exp{t0|v′X|}

]
≤ C‖θ1 − θ2‖2,

for some C > 0. This ensures that (C3∗) holds.

E Additional Simulations

In this section, we provide additional simulation studies. We investigate the case of correlated

design, the effect of the quality of the initial estimator, as well as the performance of the estimator

of limiting variance. The data generating process has been described in Section 5 in the main text.

E.1 Effect of the underlying distribution of covariates X

Suppose that (Xi,1, Xi,2, . . . , Xi,p−1) follows a multivariate normal distribution N (0,Σ0) for i =

1, 2, . . . , N . In the previous simulation studies, we adopt the covariance matrix Σ0 = Ip−1. In this

section, we consider two different structures of Σ0:

• Toeplitz: Σ0
i,j = ς |i−j|,

• Equi Corr: Σ0
i,j = ς for all i 6= j, Σi,i = 1 for all i.

For both structures, we consider the correlation parameter ς varying from {0.3, 0.5, 0.7}. In Table

3, we report the L2-estimation errors of the proposed estimators. In all cases of the covariance

matrix, Dis-FONE results are very close to those of the ERM in (2). Meanwhile, the L2-errors of

DC-SGD and SGD increase significantly when the correlation of the design matrix increases.

E.2 Effect of the initial estimator θ̂0

Recall that our methods require a consistent initial estimator θ̂0 to guarantee the convergence. We

investigate the effect on the accuracy of the initial estimator in our methods. In particular, we fix

the total sample size N = 105, the dimension p = 100, the number of machines L = 20 and varies

n0 from 5p, 10p and 20p, where n0 denotes the size of the fresh sample used to construct the initial

estimator θ̂0. From Table 4, the error of the initial estimator θ̂0 decreases as n0 increases. As a

consequence, DC-SGD has a better performance. On the other hand, the L2-errors of Dis-FONE

have already been quite small even when the initial estimator is less accurate.
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Table 3: L2-errors when covariates X are generated from different underlying distributions. Here

the total sample size N = 105 and dimension p = 100, and the number of machines L = 20. Denote

by θ̂DC the DC-SGD estimator and θ̂K the Dis-FONE.

Model n0 L2-distance to the truth θ∗ L2-distance to ERM θ̂

θ̂0 θ̂DC θ̂SGD θ̂K θ̂ θ̂DC θ̂SGD θ̂K

Logistic

Identity 1.310 0.467 0.151 0.104 0.092 0.453 0.117 0.037

Toeplitz (0.3) 1.427 0.535 0.160 0.114 0.100 0.525 0.124 0.045

Toeplitz (0.5) 1.634 0.694 0.178 0.138 0.117 0.685 0.131 0.055

Toeplitz (0.7) 1.855 0.990 0.201 0.159 0.143 0.987 0.137 0.057

Equi Corr (0.3) 1.398 0.548 0.160 0.119 0.103 0.536 0.119 0.039

Equi Corr (0.5) 2.015 0.807 0.201 0.158 0.137 0.792 0.141 0.050

Equi Corr (0.7) 2.087 1.279 0.246 0.181 0.163 1.273 0.168 0.061

Quantile

Identity 0.455 0.089 0.061 0.048 0.043 0.084 0.046 0.025

Toeplitz (0.3) 0.500 0.140 0.065 0.055 0.046 0.138 0.048 0.031

Toeplitz (0.5) 0.589 0.226 0.072 0.066 0.055 0.225 0.051 0.043

Toeplitz (0.7) 0.775 0.422 0.092 0.100 0.072 0.424 0.065 0.078

Equi Corr (0.3) 0.542 0.155 0.068 0.055 0.051 0.153 0.047 0.026

Equi Corr (0.5) 0.637 0.329 0.069 0.064 0.060 0.328 0.040 0.027

Equi Corr (0.7) 0.814 0.607 0.158 0.084 0.078 0.610 0.141 0.039

Table 4: L2-errors when varying the size n0 of the fresh sample used in constructing the initial

estimator θ̂0. Here the total sample size N = 105 and dimension p = 100, and the number of

machines L = 20. Denote by θ̂DC the DC-SGD estimator and θ̂K the Dis-FONE.

Model n0 L2-distance to the truth θ∗ L2-distance to ERM θ̂

θ̂0 θ̂DC θ̂SGD θ̂K θ̂ θ̂DC θ̂SGD θ̂K

Logistic

5p 3.095 1.211 0.201 0.102 0.093 1.203 0.174 0.040

10p 1.251 0.447 0.148 0.103 0.093 0.445 0.116 0.038

20p 0.791 0.266 0.147 0.102 0.093 0.265 0.113 0.035

Quantile

5p 0.681 0.109 0.066 0.050 0.044 0.105 0.051 0.027

10p 0.450 0.079 0.063 0.047 0.043 0.073 0.050 0.020

20p 0.311 0.082 0.057 0.048 0.043 0.077 0.040 0.024
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Table 5: Left columns: L2-estimation errors of Σ̂−1w; Right columns: Square root of the ratio

of the estimated variance to the true limiting variance of ERM θ̂. The sample size n ∈ {105, 2 ×
105, 5× 105} and dimension p ∈ {100, 200, 500}. The multiplier τn = ((p log n)/n)1/2, the step-size

ηn = (p log n)/n for logistic regression, and τn = ((p log n)/n)1/3, ηn = ((p log n)/n)2/3 for quantile

regression, respectively.

Model n L2-estimation error Square root ratio

p = 100 p = 200 p = 500 p = 100 p = 200 p = 500

Logistic

n = 105 0.198 0.387 0.771 1.043 1.033 1.027

n = 2× 105 0.191 0.349 0.725 1.041 1.027 1.019

n = 5× 105 0.165 0.325 0.684 1.017 1.017 1.014

Quantile

n = 105 0.234 0.256 0.306 1.042 1.023 1.027

n = 2× 105 0.214 0.247 0.299 1.007 1.004 1.004

n = 5× 105 0.187 0.211 0.251 1.005 1.002 1.003

E.3 Experiments on estimating the limiting variance

In this section, we provide simulation studies for estimating Σ−1w, where Σ is the population

Hessian matrix of the underlying regression model and ‖w‖2 = 1. As we illustrate in Section 4.3,

this estimator plays an important role in estimating the limiting variance of the ERM.

In this experiment, we specify w = 1p/
√
p, the sample size n ∈ {105, 2×105, 5×105}, dimension

p ∈ {100, 200, 500}. According to Theorems 4.8 and 4.9, we set the multiplier τn = ((p log n)/n)1/2,

the step-size ηn = (p log n)/n for logistic regression, and τn = ((p log n)/n)1/3, ηn = ((p log n)/n)2/3

for quantile regression, respectively.

The left columns in Table 5 present the L2-estimation errors of Σ̂−1w, i.e.,
∥∥Σ̂−1w−Σ−1w

∥∥
2
.

Given Σ̂−1w, we also compute the estimator of limiting variance w′Σ−1AΣ−1w by (26). In the

right columns of Table 5, we report the square root of the ratio between the estimated variance

and the true limiting variance, i.e.,√
(Σ̂−1w)′Â(Σ̂−1w)

/
w′Σ−1AΣ−1w.

From Table 5, our estimator achieves good performance for both logistic and quantile regression

models. As the sample size n increases, the estimation error of Σ̂−1w decreases and the ratio of

the estimated variance over limiting variance gets closer to 1.

53



References

Bach, F. and E. Moulines (2011). Non-asymptotic analysis of stochastic approximation algorithms

for machine learning. In Advances in Neural Information Processing Systems.

Banerjee, M., C. Durot, and B. Sen (2018). Divide and conquer in non-standard problems and the

super-efficiency phenomenon. Ann. Statist., To appear.

Battey, H., J. Fan, H. Liu, J. Lu, and Z. Zhu (2018). Distributed estimation and inference with

statistical guarantees. Ann. Statist. 46 (3), 1352–1382.

Cai, T. and W. Liu (2011). Adaptive thresholding for sparse covariance matrix estimation. J.

Amer. Statist. Assoc. 106 (494), 672–684.

Cai, T. T., C.-H. Zhang, H. H. Zhou, et al. (2010). Optimal rates of convergence for covariance

matrix estimation. Ann. Statist. 38 (4), 2118–2144.

Chen, X., W. Liu, and Y. Zhang (2019). Quantile regression with memory constraint. Annals of

Statistics, To appear.

Chen, X. and M. Xie (2014). A split-and-conquer approach for analysis of extraordinarily large

data. Statist. Sinica 24 (4), 1655–1684.

Dekel, O., R. Gilad-Bachrach, O. Shamir, and L. Xiao (2012). Optimal distributed online prediction

using mini-batches. J. Mach. Learn. Res. 13 (1), 165–202.

Fan, J., D. Wang, K. Wang, and Z. Zhu (2018). Distributed estimation of principal eigenspaces.

Ann. Statist., To appear.

Ghadimi, S. and G. Lan (2012). Optimal stochastic approximation algorithms for strongly convex

stochastic composite pptimization I: a generic algorithmic framework. SIAM J. Optim. 22 (4),

1469–1492.

He, X. and Q.-M. Shao (2000). On parameters of increasing dimensions. J. Multivariate Anal. 73 (1),

120–135.

Huang, C. and X. Huo (2015). A distributed one-step estimator. Preprint. Available at

arXiv:1511.01443.

Johnson, R. and T. Zhang (2013). Accelerating stochastic gradient descent using predictive variance

reduction. In Advances in Neural Information Processing Systems.

Jordan, M. I., J. D. Lee, and Y. Yang (2018). Communication-efficient distributed statistical

inference. J. Amer. Statist. Assoc., To appear.

54

https://arxiv.org/abs/1511.01443v2


Lai, T. L. (2003). Stochastic approximation. Ann. Statist. 31 (2), 391–406.

Lee, J. D., Q. Lin, T. Ma, and T. Yang (2017). Distributed stochastic variance reduced gradient

methods by sampling extra data with replacement. J. Mach. Learn. Res. 18 (1), 4404–4446.

Lee, J. D., Q. Liu, Y. Sun, and J. E. Taylor (2017). Communication-efficient sparse regression. J.

Mach. Learn. Res. 18 (5), 1–30.

Li, R., D. K. Lin, and B. Li (2013). Statistical inference in massive data sets. Appl. Stoch. Model

Bus. 29 (5), 399–409.

Li, T., A. Kyrillidis, L. Liu, and C. Caramanis (2018). Approximate newton-based statistical

inference using only stochastic gradients. Preprint. Available at arXiv:1805.08920.

Liang, T. and W. Su (2017). Statistical inference for the population landscape via moment adjusted

stochastic gradients. Preprint. Available at arXiv:1712.07519.

Nesterov, Y. and J.-P. Vial (2008). Confidence level solutions for stochastic programming. Auto-

matica 44 (6), 1559–1568.

Pang, L., W. Lu, and H. J. Wang (2012). Variance estimation in censored quantile regression via

induced smoothing. Comput. Statist. Data Anal. 56 (4), 785–796.

Polyak, B. T. and A. B. Juditsky (1992). Acceleration of stochastic approximation by averaging.

SIAM J. Control Optim. 30 (4), 838–855.

Robbins, H. and S. Monro (1951). A stochastic approximation method. Ann. Math. Statist. 22 (3),

400–407.

Shi, C., W. Lu, and R. Song (2018). A massive data framework for m-estimators with cubic-rate.

J. Amer. Statist. Assoc., To appear.

Su, W. and Y. Zhu (2018). Uncertainty quantification for online learning and stochastic approxi-

mation via hierarchical incremental gradient descent. Preprint. Available at arXiv:1802.04876.

Toulis, P., E. M. Airoldi, et al. (2017). Asymptotic and finite-sample properties of estimators based

on stochastic gradients. Ann. Statist. 45 (4), 1694–1727.

Volgushev, S., S.-K. Chao, and G. Cheng (2018). Distributed inference for quantile regression

processes. Ann. Statist., To appear.

Wang, J., M. Kolar, N. Srebro, and T. Zhang (2017). Efficient distributed learning with sparsity.

In International Conference on Machine Learning.

55

https://arxiv.org/abs/1805.08920
https://arxiv.org/abs/1712.07519
https://arxiv.org/abs/1802.04876


Wang, J. and T. Zhang (2017). Improved optimization of finite sums with minibatch stochastic

variance reduced proximal iterations. Preprint. Available at arXiv:1706.07001.

Xiao, L. and T. Zhang (2014). A proximal stochastic gradient method with progressive variance

reduction. SIAM J. Optim. 24 (4), 2057–2075.

Zhang, T. (2004). Solving large scale linear prediction problems using stochastic gradient descent

algorithms. In International Conference on Machine Learning.

Zhang, Y., J. Duchi, and M. Wainwright (2015). Divide and conquer kernel ridge regression: A

distributed algorithm with minimax optimal rates. J. Mach. Learn. Res. 16, 3299–3340.

Zhao, T., G. Cheng, H. Liu, et al. (2016). A partially linear framework for massive heterogeneous

data. Ann. Statist. 44 (4), 1400–1437.

56

https://arxiv.org/abs/1706.07001

	1 Introduction
	1.1 Notations and organization of the paper

	2 Related Works
	3 Methodology
	3.1 Divide-and-conquer SGD (DC-SGD) algorithm
	3.2 First-Order Newton-type Estimator (FONE)
	3.3 Distributed FONE for estimating *

	4 Theoretical Results
	4.1 Theory for mini-batch SGD and DC-SGD
	4.1.1 Theory of mini-batch SGD
	4.1.2 Theory of DC-SGD

	4.2 Theory for First-order Newton-type Estimator (FONE)
	4.2.1 Smooth loss function f
	4.2.2 Non-smooth loss function f

	4.3 Application to the estimation of -1w with "026B30D w"026B30D 2=1

	5 Experimental Results
	5.1 Effect of N and p
	5.2 Effect on the number of machines L
	5.3 Effect of K and T in Dis-FONE
	5.4 Effect on the sub-sample size of the first machine n1 in Dis-FONE

	6 Conclusions
	A Technical Lemmas
	B Proofs for results of DC-SGD in Section ??
	B.1 Proof of Theorem ??
	B.2 Proof of Proposition ??
	B.3 Proof of Theorem ??
	B.4 Proof of the lower bound of bias for Example ??
	B.5 Proof of the lower bound of bias for Example ??

	C Proofs for results of FONE in Section ??
	C.1 Proof of Proposition ??
	C.2 Proof of Theorem ??
	C.3 Proof of Proposition ??
	C.4 Proof of Thoerem ??
	C.5 Proof of Theorem ??
	C.6 Proof of Theorem ??

	D Verification of Conditions on motivating examples
	E Additional Simulations
	E.1 Effect of the underlying distribution of covariates X
	E.2 Effect of the initial estimator "03620
	E.3 Experiments on estimating the limiting variance


